文章标题 POJ 1458 : Common Subsequence (最长公共子序列)

本文介绍了一种解决最长公共子序列问题的有效算法。通过动态规划方法确定两个字符串间的最长公共子序列长度,提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, …, xm > another sequence Z = < z1, z2, …, zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, …, ik > of indices of X such that for all j = 1,2,…,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab
programming contest
abcd mnp
Sample Output
4
2
0
题意:给出两个字符串,求出这两个串最长的公共串
分析:dp[i][j]表示第一个串中前i个字符与第二个串前j个串中最长的公共字符数目,然后如果a[i]=b[j],dp[i][j]=dp[i-1][j-1]+1,如果不相等,那么dp[i][j]=max(dp[i-1][j],dp[i][j-1)
代码:

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<math.h>
#include<map>
#include<queue> 
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
string a,b;
int dp[1005][1005];
int main ()
{
    while (cin>>a>>b){
        int len1=a.length();//长度
        int len2=b.length();
        memset (dp,0,sizeof (dp));//初始化
        for (int i=1;i<=len1;i++){
            for (int j=1;j<=len2;j++){
                if (a[i-1]==b[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else {
                    dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
                }
            }
        }
        cout<<dp[len1][len2]<<endl;
    }   
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值