Prime Ring Problem
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
题意:有一个环,有n个数,从1~n,然后将这n个数填进这个环,然后使得相邻的两个数之和是素数,然后将所有符合情况的输出来,第一个数是1
分析:用DFS枚举,用一个数组flag【n】来标记每个数是否已经填进去了,然后用数组ans【n】来存储被填进去的第i个数字。具体看代码,特别注意,输出结果后还得输出一个空格。。。
代码:
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<math.h>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
int n;
int flag[25];
int ans[25];
int judge(int a,int b){//判断a+b是否是素数
int sum=a+b;
for (int i=2;i*i<=sum;i++){
if (sum%i==0)return 0;
}
return 1;
}
void dfs(int index){
if (index>n&&judge(ans[n],1)){//如果已经放了n个数,且第n个数与1之和是素数说明符合题意
for (int i=1;i<=n;i++){//输出序列
if (i==1)printf ("%d",ans[i]);
else printf (" %d",ans[i]);
}
printf ("\n");
return;
}
for (int i=2;i<=n;i++){
if (!flag[i]&&judge(i,ans[index-1])){//如果当前的数还没用过且与前一个数之和是素数则符合情况
flag[i]=1;//标记已经用过了
ans[index]=i;//存储数字
dfs(index+1);//执行下一个数字
flag[i]=0;
}
}
}
int main ()
{
int cnt=1;
while (cin>>n){
memset(flag,0,sizeof (flag));
ans[1]=1;
flag[1]=1;
printf ("Case %d:\n",cnt++);
dfs(2);
printf ("\n");//多一行空格
}
return 0;
}