Lake Counting
Description
Due to recent rains, water has pooled in various places in Farmer John’s field, which is represented by a rectangle of N x M (1 <= N <= 100; 1 <= M <= 100) squares. Each square contains either water (‘W’) or dry land (‘.’). Farmer John would like to figure out how many ponds have formed in his field. A pond is a connected set of squares with water in them, where a square is considered adjacent to all eight of its neighbors.
Given a diagram of Farmer John’s field, determine how many ponds he has.
Input
Line 1: Two space-separated integers: N and M
Lines 2..N+1: M characters per line representing one row of Farmer John’s field. Each character is either ‘W’ or ‘.’. The characters do not have spaces between them.
OutputLine 1: The number of ponds in Farmer John’s field.
Sample Input
10 12
W……..WW.
.WWW…..WWW
….WW…WW.
………WW.
………W..
..W……W..
.W.W…..WW.
W.W.W…..W.
.W.W……W.
..W…….W.
Sample Output
3
Hint
OUTPUT DETAILS:
There are three ponds: one in the upper left, one in the lower left,and one along the right side.
Source
USACO 2004 November
题意:由于下雨,一些地方有积水,求一个区域中有多少块积水区域。给你一张图,上面有水的地方就是W,他的周围8个方向的W也是同一个区域,求总共有多少个区域。
分析:就是一道BFS的题,求连通块。
代码:
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<math.h>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
char map1[105][105];
int n,m;
struct node {
int x,y;
};
int dx[8]={1,1,0,-1,-1,-1,0,1};
int dy[8]={0,1,1,1,0,-1,-1,-1};
void bfs(int x,int y){
queue<node>q;
node t;
t.x = x;
t.y = y;
q.push(t);
while (!q.empty()){
node temp;
temp=q.front() ;
q.pop() ;
int xn;
int yn;
for (int i=0;i<8;i++){
xn=temp.x+dx[i],yn=temp.y+dy[i];
if (xn>=0 && xn<n && yn>=0 && yn<m && map1[xn][yn]=='W'){
map1[xn][yn]='.';
node a;
a.x=xn,a.y=yn;
q.push(a);
}
}
}
}
int main ()
{
while (scanf ("%d%d",&n,&m)!=EOF){
for (int i=0;i<n;i++){
scanf ("%s",map1[i]);
}
int cnt=0;
for (int i=0;i<n;i++){
for (int j=0;j<m;j++){
if (map1[i][j]=='W'){
bfs(i,j);
map1[i][j]='.';
cnt++;
}
}
}
printf ("%d\n",cnt);
}
return 0;
}