HDU 4405:Aeroplane chess(概率DP)

本文介绍了一种计算飞行棋游戏中达到终点期望步数的方法。通过定义数组f[i]来记录从第i格到达终点的期望步数,并利用向量数组存储捷径,实现了从后向前递推求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Aeroplane chess

Description

Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

Please help Hzz calculate the expected dice throwing times to finish the game.

Input

There are multiple test cases.
Each test case contains several lines.
The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000).
Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  
The input end with N=0, M=0.

Output

For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.

Sample Input

2 0
8 3
2 4
4 5
7 8
0 0

Sample Output

1.1667

2.3441


题意:类似飞行棋,有0到N格,从0开始走,然后每掷一次骰子,就走骰子上的点数,然后棋盘上有M条捷径,当到达捷径的其实点x 时可以直接飞到捷径的终点y.问到达终点所用次数的期望,其中刚好到达N,或者超过N都算到达。比如N为2,你掷的骰子为3 ,则到达。

分析:题目叫我们求期望,应该从后往前推,定义一个数组f[i]表示第i格到达目标所需要次数的期望,然后用不定长数组vector<int>v[N+1],存储捷径的起始点,因为起始点的期望跟终点的期望相等。在每次求f[i]时,应该把f[i]赋值给能到达i的起始点

代码:

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<math.h>
#include<queue> 
#include<algorithm>
using namespace std;
int n,m;

vector <int> v[100010];

//int x[1005];
//int y[1005];
double f[100010];
int flag[100010]; 
int main ()
{
	while (scanf ("%d%d",&n,&m)!=EOF){
		if (n==0&&m==0)break;
		for (int i=0;i<=n;i++) v[i].clear();
		for (int i=1;i<=m;i++){
			int x,y;
			scanf ("%d%d",&x ,&y ); 
			v[y].push_back(x);// 把能到达y 的起始点x放在对应的终点y 对应的数组中 
		}
		memset(f,0,sizeof (f));
		memset(flag,0,sizeof (flag));
		f[n]=0;//flag[n]=1;
		for (int i=0;i<v[n].size();i++){
			int t=v[n][i];
			f[t]=f[n];//终点为n的捷径的起点的期望与终点一样
			flag[t]=1;//标记; 
		}
		for(int i=n-1;i>=0;i--){
			if (flag[i]==0){
				f[i]=(f[i+1]+f[i+2]+f[i+3]+f[i+4]+f[i+5]+f[i+6])/6+1;
				flag[i]=1;
			}
			
			for (int j=0;j<v[i].size();j++){
				int t=v[i][j];
				f[t]=f[i];
				flag[t]=1;//标记 
			}
		} 
		printf ("%.4f\n",f[0]);
	}	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值