大意不再赘述。
思路:
混合图的欧拉回路求解,具体步骤见另一篇博客:http://blog.youkuaiyun.com/wall_f/article/details/8237520
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
const int MAXN = 1010;
const int MAXM = 50010;
const int INF = 0x3f3f3f3f;
struct Edge
{
int v, f;
int next;
}edge[MAXM];
int n, m;
int cnt;
int s, t;
int first[MAXN], level[MAXN];
int q[MAXN];
int ind[MAXN], outd[MAXN];
int totFlow;
void init()
{
cnt = 0;
totFlow = 0;
memset(first, -1, sizeof(first));
memset(ind, 0, sizeof(ind));
memset(outd, 0, sizeof(outd));
}
void read(int u, int v, int f)
{
edge[cnt].v = v, edge[cnt].f = f;
edge[cnt].next = first[u], first[u] = cnt++;
}
void read_graph(int u, int v, int f)
{
read(u, v, f);
read(v, u, 0);
}
int bfs(int s, int t)
{
memset(level, 0, sizeof(level));
level[s] = 1;
int front = 0, rear = 1;
q[front] = s;
while(front < rear)
{
int x = q[front++];
if(x == t) return 1;
for(int e = first[x]; e != -1; e = edge[e].next)
{
int v = edge[e].v, f = edge[e].f;
if(!level[v] && f)
{
level[v] = level[x] + 1;
q[rear++] = v;
}
}
}
return 0;
}
int dfs(int u, int maxf, int t)
{
if(u == t) return maxf;
int ret = 0;
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v, f = edge[e].f;
if(level[v] == level[u] + 1 && f)
{
int Min = min(maxf-ret, f);
f = dfs(v, Min, t);
edge[e].f -= f;
edge[e^1].f += f;
ret += f;
if(ret == maxf) return ret;
}
}
return ret;
}
int Dinic(int s, int t)
{
int ans = 0;
while(bfs(s, t)) ans += dfs(s, INF, t);
return ans;
}
void read_case()
{
init();
scanf("%d%d", &n, &m);
while(m--)
{
int u, v, flag;
scanf("%d%d%d", &u, &v, &flag);
outd[u]++, ind[v]++;
if(u != v)
{
if(!flag) read_graph(u, v, 1);
}
}
}
int build()
{
int flag = 1;
s = 0, t = n+1;
for(int i = 1; i <= n; i++)
{
if((ind[i]+outd[i]) & 1) //出度加入度是奇数
{
return 0;
}
else if(outd[i] > ind[i]) //出度大于入度
{
int dif = outd[i]-ind[i];
read_graph(s, i, dif/2);
totFlow += dif/2;
} //可能有入度等于出度的情况,连不连无所谓
else
{
int dif = ind[i]-outd[i];
read_graph(i, t, dif/2);
}
}
return 1;
}
void solve()
{
read_case();
int flag = build();
int ans = Dinic(s, t);
if(!flag) printf("impossible\n");
else if(ans >= totFlow) printf("possible\n");
else printf("impossible\n");
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
solve();
}
return 0;
}