-
Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。 使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简言之,Stream API 提供了一种高效且易于使用的处理数据的方式。
-
Stream 和 Collection 集合的区别:Collection 是一种静态的内存数据结构,而 Stream 是有关计算的。前者是主要面向内存,存储在内存中,后者主要是面向 CPU,通过 CPU 实现计算。
-
Stream是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。“集合讲的是数据,Stream讲的是计算!”
-
注意事项
-
Stream 自己不会存储元素。
-
Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
-
Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
-
操作步骤
- 创建 Stream:一个数据源(如:集合、数组),获取一个流
- 中间操作:一个中间操作链,对数据源的数据进行处理
- 终止操作(终端操作) :一旦执行终止操作,就执行中间操作链,并产生结果。之后,不会再被使用。
Stream API
创建Stream方式
//1.通过集合 Collection 接口
default Stream<E> stream();//返回一个顺序流
default Stream<E> parallelStream();//返回一个并行流
//2.通过数组 Arrays
static <T> Stream<T> stream(T[] array);
//3.通过Stream的of()
public static<T> Stream<T> of(T... values);//返回一个流
//4.使用静态方法 Stream.iterate() 和 Stream.generate(), 创建无限流。
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f);
public static<T> Stream<T> generate(Supplier<T> s);
Stream的中间操作
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”。
筛选与切片
方 法 | 描 述 |
---|---|
filter(Predicate p) | 接收 Lambda , 从流中排除某些元素 |
distinct() | 筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素 |
limit(long maxSize) | 截断流,使其元素不超过给定数量 |
skip(long n) | 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补 |
映射
方 法 | 描 述 |
---|---|
map(Function f) | 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 |
mapToDouble(ToDoubleFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。 |
mapToInt(ToIntFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。 |
mapToLong(ToLongFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。 |
flatMap(Function f) | 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流 |
排序
方 法 | 描 述 |
---|---|
sorted() | 产生一个新流,其中按自然顺序排序 |
sorted(Comparator com) | 产生一个新流,其中按比较器顺序排序 |
Stream 的终止操作
-
终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。
-
流进行了终止操作后,不能再次使用。
匹配与查找
方 法 | 描 述 |
---|---|
allMatch(Predicate p) | 检查是否匹配所有元素 |
anyMatch(Predicate p) | 检查是否至少匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配所有元素 |
findFirst() | 返回第一个元素 |
findAny() | 返回当前流中的任意元素 |
count() | 返回流中元素总数 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
forEach(Consumer c) | 内部迭代(使用 Collection 接口需要用户去做迭代,称为外部迭代。相反,Stream API 使用内部迭代——它帮你把迭代做了) |
归约
方 法 | 描 述 |
---|---|
reduce(T iden, BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 T |
reduce(BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 Optional |
收集
方 法 | 描 述 |
---|---|
collect(Collector c) | 将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法 |
-
Collector 接口中方法的实现决定了如何对流执行收集的操作(如收集到 List、Set、Map)。
-
Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,
具体方法与实例如下表:
方 法 | 返回类型 | 作用 |
---|---|---|
toList | List | 把流中元素收集到List |
toSet | Set | 把流中元素收集到Set |
toCollection | Collection | 把流中元素收集到创建的集合 |
counting | Long | 计算流中元素的个数 |
summingInt | Integer | 对流中元素的整数属性求和 |
averagingInt | Double | 计算流中元素Integer属性的平均值 |
summarizingInt | IntSummaryStatistics | 收集流中Integer属性的统计值。如:平均值 |
joining | String | 连接流中每个字符串 |
maxBy | Optional | 根据比较器选择最大值 |
minBy | Optional | 根据比较器选择最小值 |
reducing | 归约产生的类型 | 从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值 |
collectingAndThen | 转换函数返回的类型 | 包裹另一个收集器,对其结果转换函数 |
groupingBy | Map<K, List> | 根据某属性值对流分组,属性为K,结果为V |
partitioningBy | Map<Boolean, List> | 根据true或false进行分区 |
List<Employee> emps= list.stream().collect(Collectors.toList());
Set<Employee> emps= list.stream().collect(Collectors.toSet());
Collection<Employee> emps =list.stream().collect(Collectors.toCollection(ArrayList::new));
long count = list.stream().collect(Collectors.counting());
int total=list.stream().collect(Collectors.summingInt(Employee::getSalary));
double avg = list.stream().collect(Collectors.averagingInt(Employee::getSalary));
int SummaryStatisticsiss= list.stream().collect(Collectors.summarizingInt(Employee::getSalary));
String str= list.stream().map(Employee::getName).collect(Collectors.joining());
Optional<Emp>max= list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary)));
Optional<Emp> min = list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary)));
int total=list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum));
int how= list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
Map<Emp.Status, List<Emp>> map= list.stream().collect(Collectors.groupingBy(Employee::getStatus));
Map<Boolean,List<Emp>> vd = list.stream().collect(Collectors.partitioningBy(Employee::getManage));