Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define MAXN 1000000
using namespace std;
int dp[MAXN+10];
int mmax[MAXN+10];
int a[MAXN+10];
int main()
{
int n,m;
int mmmax;
while(scanf("%d%d",&m,&n)!=EOF)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i]=0;
mmax[i]=0;
}
dp[0]=0;
mmax[0]=0;
for(int j=1;j<=m;j++)
{
mmmax=-INF;
for(int i=j;i<=n;i++)
{
dp[i]=max(dp[i-1]+a[i],mmax[i-1]+a[i]);//此时的mmax[i-1]对应j-1时候的值
mmax[i-1]=mmmax;
mmmax=max(dp[i],mmmax);
}
}
printf("%d\n",mmmax);
}
return 0;
}