The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2 3 5 7 15 6 4 10296 936 1287 792 1
Sample Output
105 10296
#include <cstring>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#define MAXN 1e7+5
using namespace std;
typedef long long LL;
LL a,b;
LL gcd(LL a, LL b)
{
return b == 0 ? a : gcd(b, a % b);
}
LL lcm(LL a, LL b)
{
return a / gcd(a, b) * b; //先除后乘
}
void cmax(LL a,LL b)
{
LL temp;
if(a<b) temp=a,a=b,b=temp;
}
int main()
{
int T;
LL n;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
scanf("%lld",&a);
for(int i=1;i<n;i++){
scanf("%lld",&b);
cmax(a,b);
a=lcm(a,b);
}
printf("%lld\n",a);
}
return 0;
}