依旧最小生成树

本文探讨了一个发展中国家如何通过建设最少数量的机场和连接道路来确保所有重要地点都能便捷地到达至少一个机场的问题。考虑到成本因素,文章提出了一种算法,旨在找出最经济的方案,并在成本相同时最大化机场的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The government of a certain developing nation wants to improve transportation in one of its most inaccessible areas, in an attempt to attract investment. The region consists of several important locations that must have access to an airport.

 

Of course, one option is to build an airport in each of these places, but it may turn out to be cheaper to build fewer airports and have roads link them to all of the other locations. Since these are long distance roads connecting major locations in the country (e.g. cities, large villages, industrial areas), all roads are two-way. Also, there may be more than one direct road possible between two areas. This is because there may be several ways to link two areas (e.g. one road tunnels through a mountain while the other goes around it etc.) with possibly differing costs.

 

A location is considered to have access to an airport either if it contains an airport or if it is possible to travel by road to another location from there that has an airport.

 

You are given the cost of building an airport and a list of possible roads between pairs of locations and their corresponding costs. The government now needs your help to decide on the cheapest way of ensuring that every location has access to an airport. The aim is to make airport access as easy as possible, so if there are several ways of getting the minimal cost, choose the one that has the most airports.

 

Note: The input file is large; make sure your I/O code is fast.

 

 

Input

 

The first line of input contains the integer T(T<25), the number of test cases. The rest of the input consists of T cases.

 

Each case starts with three integers NM and A (0<N<=10,000, 0<=M<=100,000, 0<A<=10,000) separated by white space. N is the number of locations, M is the number of possible roads that can be built, and A is the cost of building an airport.

 

The following M lines each contain three integers XY and C (1<=XY<=N, 0<C<=10,000), separated by white space. X and Y are two locations, and C is the cost of building a road between X and Y.

 

Output

 

Your program should output exactly T lines, one for each case. Each line should be of the form "Case #X: Y Z", where X is the case number Y is the minimum cost of making roads and airports so that all locations have access to at least one airport, and Z is the number of airports to be built. As mentioned earlier, if there are several answers with minimal cost, choose the one that maximizes the number of airports.

​

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define INF 0x3f3f3f3f
#define I 1000010
using namespace std;
int N,M,A,E,pre[I],cnt;

struct edge
{
	int u,v,cost;
};
edge e[I];

bool cmp(edge e1,edge e2)
{
	return e1.cost<e2.cost;
}

void init()//每个点的上级都是自己
{
	cnt=0;
	for(int i=0;i<N;i++)
		pre[i]=i;
}

int Find (int x)//找到一个点是不是同类
{
	if(x==pre[x]) return x;
	return pre[x]=Find(pre[x]);
}

int kruskal()
{
	int ans=0;
	sort(e,e+M,cmp);
	init();
	for(int i=0;i<M;i++)
	{
		int fx=Find(e[i].u);
		int fy=Find(e[i].v);
		if(fx!=fy)
		{
			if(e[i].cost>=A)
                continue;
            else
            {
                pre[fx]=fy;
                ans+=e[i].cost;
            }
        }
	}
	return ans;
}

int main()
{
	int cas=1;
	int T;scanf("%d",&T);
	while(T--)
	{
		cnt=0;
		memset(e,0,sizeof(e));
		scanf("%d%d%d",&N,&M,&A);
	for(int i=0;i<M;i++)
        {
            scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].cost);
        }
		int res=kruskal();
		for(int i=0;i<N;i++)
        {
            if(pre[i]==i)
                cnt++;
        }
        res+=(cnt)*A;
	printf("Case #%d: %d %d\n",cas++,res,cnt);
	}
	return 0;
}

[点击并拖拽以移动]
​

Sample Input

Sample Output

2

4 4 100

1 2 10

4 3 12

4 1 41

2 3 23

5 3 1000

1 2 20

4 5 40

3 2 30

Case #1: 145 1

Case #2: 2090 2

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值