Java内存模型与线程&线程安全与锁优化——The memory model and thread&Thread-safe and Lock optimization

本文深入探讨了Java内存模型(JMM)及其对多线程编程的影响,强调了主内存与工作内存的概念以及它们之间的交互操作。讲解了线程间的变量同步规则,包括volatile关键字的作用以及先行发生原则。此外,文章还介绍了线程的实现方式,如内核线程、用户线程和混合实现,并讨论了Java线程调度的策略。最后,详细阐述了线程安全、锁优化以及锁的多种实现,如自旋锁、偏向锁和轻量级锁,旨在提高并发性能。

Java内存模型与线程

 多任务处理在现代计算机操作系统中几乎已是一项必备的功能了。在许多场景下,让计算机同时 去做几件事情,不仅是因为计算机的运算能力强大了,还有一个很重要的原因是计算机的运算速度与它的存储和通信子系统的速度差距太大,大量的时间都花费在磁盘I/O、网络通信或者数据库访问上。

对于计算量相同的任务,程序线程并发协调得越有条不紊,效率自然就会越高;反之,线程之间频繁争用数据,互相阻塞甚至死锁,将会大大降低程序的并发能力。

硬件的效率与一致性

基于高速缓存的存储交互很好地解决了处理器与内存速度之间的矛盾,但是也为计算机系统带来更高的复杂度,它引入了一个新的问题:缓存一致性。在多路处理器系统中,每 处理器都有自己的高速缓存,而它们又共享同一主内存,这种系统称为共享内存多核系统,如图

当多个处理器的运算任务都涉及 同一块主内存区域时,将可能导致各自的缓存数据不一致。 为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议来进行操作,这类协议有MSI、MESI、MOSI、 Synapse、Firefly及Dragon Protocol等。

Java内存模型: 来屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。

主内存与工作内存

Java内存模型的主要目的是定义程序中各种变量的访问规则,即关注在虚拟机中把变量值存储到内存和从内存中取出变量值这样的底层细节。此处的变量与Java编程中所说的变量有所区别,包括了实例字段、静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。为了获得更好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器是否要进行调整代码执行顺序这类优化措施。

不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如图

内存间交互操作

lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占的状态。 

unlock(解锁):作用于主内存的变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。

read(读取):作用于主内存的变量,把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。

load(载入):作用于工作内存的变量,把read操作从主内存中得到的变量值放入工作内存的变量副本中。

use(使用):作用于工作内存的变量,把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。

assign(赋值):作用于工作内存的变量,把一个从执行引擎接收的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。

store(存储):作用于工作内存的变量,把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。

write(写入):作用于主内存的变量,把store操作从工作内存中得到的变量的值放入主内存的变量中。

Java内存模型只要求上述两个操作必须按顺序执行,但不要求是连续执行。也就是说read与load之间、store与write之间是可插入其他指令 的,如对主内存中的变量a、b进行访问时,一种可能出现的顺序是read a、read b、load b、load a。除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:

1、不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者工作内存发起回写了但主内存不接受的情况出现。

2、不允许一个线程丢弃它最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。

3、不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。

4、一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或 assign)的变量,换句话说就是对一个变量实施use、store操作之前,必须先执行assign和load操作。 

5、一个变量在同一个时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。 

6、如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作以初始化变量的值。

7、如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定的变量。 

对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)。

由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁 (使用synchronized、java.util.concurrent中的锁或原子类)来保证原子性:

1、运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值。 

2、变量不需要与其他的状态变量共同参与不变约束

代码清单12-3所示的这类场景中就很适合使用volatile变量来控制并发,当shutdown()方法被调用时,能保证所有线程中执行的doWork()方法都立即停下来

假定T表示一个线程,V和W分别表示两个volatile型变量,那么在进行read、load、use、assign、store和write操作时需要满足如下规则:

只有当线程T对变量V执行的前一个动作是load的时候,线程T才能对变量V执行use动作;并且, 只有当线程T对变量V执行的后一个动作是use的时候,线程T才能对变量V执行load动作。线程T对变量 V的use动作可以认为是和线程T对变量V的load、read动作相关联的,必须连续且一起出现。 这条规则要求在工作内存中,每次使用V前都必须先从主内存刷新最新的值,用于保证能看见其 他线程对变量V所做的修改。 

只有当线程T对变量V执行的前一个动作是assign的时候,线程T才能对变量V执行store动作;并 且,只有当线程T对变量V执行的后一个动作是store的时候,线程T才能对变量V执行assign动作。线程 T对变量V的assign动作可以认为是和线程T对变量V的store、write动作相关联的,必须连续且一起出现。 这条规则要求在工作内存中,每次修改V后都必须立刻同步回主内存中,用于保证其他线程可以看到自己对变量V所做的修改。

假定动作A是线程T对变量V实施的use或assign动作,假定动作F是和动作A相关联的load或store动作,假定动作P是和动作F相应的对变量V的read或write动作;与此类似,假定动作B是线程T对变量W 实施的use或assign动作,假定动作G是和动作B相关联的load或store动作,假定动作Q是和动作G相应的对变量W的read或write动作。如果A先于B,那么P先于Q。这条规则要求volatile修饰的变量不会被指令重排序优化,从而保证代码的执行顺序与程序的顺序相同。

针对long和double型变量的特殊规则

允许虚拟机将没有被volatile修饰的64位数据(long和double)的读写操作划分为两次32位的操作来进行,即允许虚拟机实现自行选择是否 要保证64位数据类型的load、store、read和write这四个操作的原子性

先行发生原则

java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。

下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来,则它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。 

程序次序规则:在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。

管程锁定规则:一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是“同一个锁”,而“后面”是指时间上的先后。 

volatile变量规则:对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。

线程启动规则:Thread对象的start()方法先行发生于此线程的每一个动作。 

线程终止规则:线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread::join()方法是否结束、Thread::isAlive()的返回值等手段检测线程是否已经终止执行。

线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread::interrupted()方法检测到是否有中断发生。

对象终结规则:一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。

传递性:如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

代码清单12-9中显示的是一组getter/setter方法,假设存在线程A和B,线程A先(时间上的先后)调用了setValue(1),然后线程B调用了同一个对象的getValue()

由于两个方法分别由线程A和B调用,不在一个线程中,所以程序次序规则在这里不适用;由于没有同步块,自然就不会发生lock和unlock操作,所以管程锁定规则不适用;由于value变量没有被volatile关键字修饰,所以volatile变量规则不适用;后面的线程启动、终止、中断规则和对象终结规则也和这里完全没有关系。因为没有一个适用的先行发生规则,所以最后一条传递性也无从谈起,因此我们可以判定,尽管线程A在操作时间上先于线程B,但是无法确定线程B中getValue()方法的返回结果

线程的实现

实现线程主要有三种方式:使用内核线程实现(1:1实现),使用用户线程实现(1:N实现), 使用用户线程加轻量级进程混合实现(N:M实现)。

内核线程实现

内核线程是直接由 操作系统内核支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器对线程进行调度,并负责将线程的任务映射到各个处理器上。每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就称为多线程内核

程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程,轻量级进程就是通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1 的关系称为一对一的线程模型,如图

由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元,即使其中某一个轻量级进程在系统调用中被阻塞了,也不会影响整个进程继续工作。轻量级进程也具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。而系统调用的代价相对较高,需要在用户态和内核态中来回切换。其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。

用户线程实现

使用用户线程实现的方式被称为1:N实现。广义上来讲,一个线程只要不是内核线程,都可以认为是用户线程的一种,因此从这个定义上看,轻量级进程也属于用户线程,但轻量级进程的实现始终是建立在内核之上的,许多操作都要进行系统调用,因此效率会受到限制,并不 具备通常意义上的用户线程的优点。

狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知到用户线程的存在及如何实现的。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。这种进程与用户线程之间1:N的关系称为一对多的线程模型,如图

用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都 需要由用户程序自己去处理。线程的创建、销毁、切换和调度都是用户必须考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如“阻塞如何处理”“多处理器系统中如何将线程映射到其他处 理器上”这类问题解决起来将会异常困难,甚至有些是不可能实现的。

混合实现

在这种混合实现下,既存在用户线程,也存在轻量级进程。用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁, 这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,是N:M的关系,如图

许多UNIX系列的操作系统,如Solaris、HP-UX等都提供了M:N的线程模型实现。在这些操作系 统上的应用也相对更容易应用M:N的线程模型。

Java线程调度

协同式线程调度和抢占式线程调度。

使用协同式调度的多线程系统,线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,主动通知系统切换到另外一个线程上去。协同式多线程的最大好处是实现简单,而且由于线程要把自己的事情干完后才会进行线程切换,切换操作对线程自己是可知的,所以一般没有线程同步的问题。

使用抢占式调度的多线程系统,每个线程将由系统来分配执行时间,线程的切换不由线程本身来决定。譬如在Java中,有Thread::yield()方法可以主动让出执行时间,但是如果想要主动获取执行时间,线程本身是没有什么办法的。在这种实现线程调度的方式下,线程的执行时间是系统可控的,也不会有一个线程导致整个进程甚至整个系统阻塞的问题。

线程优先级并不是一项稳定的调节手段,这不仅仅体现在某些操作系统上不同的优先级实际会变得相同这一点上,还有其他情况让我们不能过于依赖线程优先级:优先级可能会被系统自行改变,例如在Windows系统中存在一个叫“优先级推进器”的功能(Priority Boosting,当然它可以被关掉),大致作用是当系统发现一个线程被执行得特别频繁时,可能会越过线程优先级去为它分配执行时间,从而减少因为线程频繁切换而带来的性能损耗。因此,并不能在程序中通过优先级来完全准确判断一组状态都为Ready的线程将会先执行哪一个

状态转换

新建(New):创建后尚未启动的线程处于这种状态。

运行(Runnable):包括操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着操作系统为它分配执行时间。

无限期等待(Waiting):处于这种状态的线程不会被分配处理器执行时间,它们要等待被其他线程显式唤醒。以下方法会让线程陷入无限期的等待状态:

没有设置Timeout参数的Object::wait()方法; 

没有设置Timeout参数的Thread::join()方法;

LockSupport::park()方法。

限期等待(Timed Waiting):处于这种状态的线程也不会被分配处理器执行时间,不过无须等待被其他线程显式唤醒,在一定时间之后它们会由系统自动唤醒。

以下方法会让线程进入限期等待状态:

Thread::sleep()方法;

设置了Timeout参数的Object::wait()方法; 

设置了Timeout参数的Thread::join()方法;

LockSupport::parkNanos()方法; 

LockSupport::parkUntil()方法。

阻塞(Blocked):线程被阻塞了,“阻塞状态”与“等待状态”的区别是“阻塞状态”在等待着获取到一个排它锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。在程序等待进入同步区域的时候,线程将进入这种状态。

结束(Terminated):已终止线程的线程状态,线程已经结束执行。

内核线程的局限

Java目前的并发编程机制就与上述架构趋势产生了一些矛盾,1:1的内核线程模型是如今Java虚拟机线程实现的主流选择,但是这种映射到操作系统上的线程天然的缺陷是切换、调度成本高昂,系统能容纳的线程数量也很有限。以前处理一个请求可以允许花费很长时间在单体应用中,具有这种线程切换的成本也是无伤大雅的,但现在在每个请求本身的执行时间变得很短、数量变得很多的前提下, 用户线程切换的开销甚至可能会接近用于计算本身的开销,会造成严重的浪费。

协程的复苏

协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多。 协程也有它的局限,需要在应用层面实现的内容(调用栈、调度器)特别多

线程安全与锁优化

线程安全

当多个线程同时访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果,称这个对象是线程安全的。

Java语言中的线程安全

将Java语言中各种操作共享的数据分为以下五类:不可变、绝对线程安全、相对线程安全、线程兼容和线程对立。

不可变

只要一个不可变的对象被正确地构建出来(即没有发生this引用逃逸的情况),那其外部的可见状态永远都不会改变,永远都不会看到它在多个线程之中处于不一致的状态

保证对象行为不影响自己状态的途径有很多种,最简单的一种就是把对象里面带有状态的变量都声明为final,这样在构造函数结束之后,它就是不可变的,例如代码中所示的java.lang.Integer 构造函数,它通过将内部状态变量value定义为final来保障状态不变。

绝对线程安全

在Java API中标注自己是线程安全的类,大多数都不是绝对的线程安全。

假如Vector一定要做到绝对的线程安全,那就必须在它内部维护一组一致性的快照访问才行,每次对其中元素进行改动都要产生新的快照,这样要付出的时间和空间成本都是非常大的。

相对线程安全

相对线程安全就是通常意义上所讲的线程安全,它需要保证对这个对象单次的操作是线程安全的,我们在调用的时候不需要进行额外的保障措施,但是对于一些特定顺序的连续调用,就可能需要在调用端使用额外的同步手段来保证调用的正确性。

在Java语言中,大部分声称线程安全的类都属于这种类型,例如Vector、HashTable、Collections的 synchronizedCollection()方法包装的集合等。

线程兼容

指对象本身并不是线程安全的,但是可以通过在调用端正确地使用同步手段来保证对象在并发环境中可以安全地使用。

Java类库API中大部分的类都是线程兼容的,如与前面的Vector和HashTable相对应的集合类ArrayList和HashMap等。

线程对立

线程对立是指不管调用端是否采取了同步措施,都无法在多线程环境中并发使用代码。由于Java 语言天生就支持多线程的特性,线程对立这种排斥多线程的代码是很少出现的,而且通常都是有害 的,应当尽量避免。

线程安全的实现方法

互斥同步

同步是指在多个线程并发访问共享数据时,保证共享数据在同一个时刻只被一条(或者是一些, 当使用信号量的时候)线程使用。而互斥是实现同步的一种手段,临界区、互斥量和信号量都是常见的互斥实现方式。因此在“互斥同步”这四个字里面,互斥是因,同步是果;互斥是方法,同步是目的。

在Java里,最基本的互斥同步手段是synchronized关键字,这是一种块结构的同步语法。synchronized关键字经过Javac编译之后,会在同步块的前后分别形成 monitorenter和monitorexit这两个字节码指令。这两个字节码指令都需要一个reference类型的参数来指明要锁定和解锁的对象。如果Java源码中的synchronized明确指定了对象参数,那就以这个对象的引用作为reference;如果没有明确指定,那将根据synchronized修饰的方法类型(如实例方法或类方法),来决定是取代码所在的对象实例还是取类型对应的Class对象来作为线程要持有的锁。

在执行monitorenter指令时,首先要去尝试获取对象的锁。如果这个对象没被锁定,或者当前线程已经持有了那个对象的锁,就把锁的计数器的值增加一,而在执行 monitorexit指令时会将锁计数器的值减一。一旦计数器的值为零,锁随即就被释放了。如果获取对象锁失败,那当前线程就应当被阻塞等待,直到请求锁定的对象被持有它的线程释放为止。

被synchronized修饰的同步块对同一条线程是可重入的。这意味着同一线程反复进入同步块也不会出现自己把自己锁死的情况。

被synchronized修饰的同步块在持有锁的线程执行完毕并释放锁之前,会无条件地阻塞后面其他线程的进入。这意味着无法像处理某些数据库中的锁那样,强制已获取锁的线程释放锁;也无法强制正在等待锁的线程中断等待或超时退出。

ReentrantLock与synchronized相比增加了一些高级功能,主要有以下三项:

等待可中断:是指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。可中断特性对处理执行时间非常长的同步块很有帮助。

公平锁:是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非公平的,ReentrantLock在默认情况下也是非公平的,但可以通过带boolean值的构造函数要求使用公平 锁。不过一旦使用了公平锁,将会导致ReentrantLock的性能急剧下降,会明显影响吞吐量。

锁绑定多个条件:是指一个ReentrantLock对象可以同时绑定多个Condition对象。在synchronized 中,锁对象的wait()跟它的notify()或者notifyAll()方法配合可以实现一个隐含的条件,如果要和多于一 个的条件关联的时候,就不得不额外添加一个锁;而ReentrantLock则无须这样做,多次调用 newCondition()方法即可

非阻塞同步

乐观并发策略的实现不再需要把线程阻塞挂起,这种同步操作被称为非阻塞同步

CAS指令需要有三个操作数,分别是内存位置(在Java中可以简单地理解为变量的内存地址,用V 表示)、旧的预期值(用A表示)和准备设置的新值(用B表示)。CAS指令执行时,当且仅当V符合A时,处理器才会用B更新V的值,否则它就不执行更新。但是,不管是否更新了V的值,都会返回V的旧值,上述的处理过程是一个原子操作,执行期间不会被其他线程中断。

尽管CAS看起来很美好,既简单又高效,但显然这种操作无法涵盖互斥同步的所有使用场景,并 且CAS从语义上来说并不是真正完美的,它存在一个逻辑漏洞:如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然为A值,那就能说明它的值没有被其他线程改变过了吗?这是不能的,因为如果在这段期间它的值曾经被改成B,后来又被改回为A,那CAS操作就会误认为它从来没有被改变过。

锁优化

自旋锁与自适应自旋

为了让线程等待,只须让线程执行一个忙循环(自旋),这项技术是自旋锁。

自旋等待的时间必须有一定的限度,如果自旋超过了限定的次数仍然没有成功获得锁,应当使用传统的方式去挂起线程。自旋次数的默认值是10次,用户也可以使用参数-XX:PreBlockSpin来自行更改。

自适应意味着自旋的时间不再是固定的了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定的。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也有可能再次成功,进而允许自旋等待持续相对更长的时间,比如持续100次忙循环。

锁消除

锁消除是指虚拟机即时编译器在运行时,对一些代码要求同步,但是对被检测到不可能存在共享数据竞争的锁进行消除。

锁粗化

如果一系列的连续操作都对同一个对象反复加锁和解锁,甚至加锁操作是出现在循环体之中的,那即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能损耗。

代码清单13-7所示连续的append()方法就属于这类情况。如果虚拟机探测到有这样一串零碎的操作都对同一个对象加锁,将会把加锁同步的范围扩展(粗化)到整个操作序列的外部,以代码清单13-7 为例,就是扩展到第一个append()操作之前直至最后一个append()操作之后,这样只需要加锁一次就可以了。

轻量级锁

在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。

由于对象头信息是与对象自身定义的数据无关的额外存储成本,考虑到Java虚拟机的空间使用效率,Mark Word被设计成一个非固定的动态数据结构,以便在极小的空间内存储尽量多的信息。它会 根据对象的状态复用自己的存储空间。例如在32位的HotSpot虚拟机中,对象未被锁定的状态下, Mark Word的32个byte空间里的25个byte将用于存储对象HashCode,4个byte用于存储对象分代年龄,2 个byte用于存储锁标志位,还有1个byte固定为0(这表示未进入偏向模式)。对象除了未被锁定的正常状态外,还有轻量级锁定、重量级锁定、GC标记、可偏向等几种不同状态,这些状态下对象头的存储内容如表

偏向锁

目的是消除数据在无竞争情况下的同步原语, 进一步提高程序的运行性能。如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不去做了。

偏向锁可以提高带有同步但无竞争的程序性能,但它同样是一个带有效益权衡性质的优化,也就是说它并非总是对程序运行有利。如果程序中大多数的锁都总是被多个不同的线程访问,那偏向模式就是多余的。在具体问题具体分析的前提下,有时候使用参数-XX:-UseBiasedLocking来禁止偏向锁优化反而可以提升性能。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值