快速理解三角函数:积化和差、和差化积

本文介绍了高中数学中三角函数的重要概念——积化和差与和差化积,通过四个基础公式详细阐述了它们的转换方法,并强调了这些公式在信号处理等大学课程中的应用价值。
  • 快速理解三角函数:积化和差、和差化积

  • 积化和差、和差化积是高中数学三角函数部分非常重要的内容。下面我们将分析如何快速理解并记忆积化和差、和差化积。
  • 先来看看和差化积的四个基础公式
  • sin(A)+sin(B)=2sin(A+B2)cos(A−B2)sin(A)+sin(B)=2sin(\frac{A+B}{2})cos(\frac{A-B}{2})sin(A)+sin(B)=2sin(2A+B)cos(2AB)
    这里考虑将左边的角A和角B拆分成
    比如:
    sin(A+B2+A−B2)+sin(A+B2−A−B2)=sin(A+B2)cos(A−B2)+cos(A+B2)sin(A−B2)+sin(A+B2)cos(A−B2)−cos(A+B2)sin(A−B2)=2sin(A+B2)cos(A−B2)sin(\frac{A+B}{2}+\frac{A-B}{2})+sin(\frac{A+B}{2}-\frac{A-B}{2})=sin(\frac{A+B}{2})cos(\frac{A-B}{2})+cos(\frac{A+B}{2})sin(\frac{A-B}{2})+sin(\frac{A+B}{2})cos(\frac{A-B}{2})-cos(\frac{A+B}{2})sin(\frac{A-B}{2})=2sin(\frac{A+B}{2})cos(\frac{A-B}{2})sin(2A+B+2AB)+sin(2A+B2AB)=sin(2A+B)cos(2AB)+cos(2A+B)sin(2AB)+sin(2A+B)cos(2AB)cos(2A+B)sin(2AB)=2sin(2A+B)cos(2AB)
  • sin(A)−sin(B)=2cos(A+B2)sin(A−B2)sin(A)-sin(B)=2cos(\frac{A+B}{2})sin(\frac{A-B}{2})sin(A)sin(B)=2cos(2A+B)sin(2AB)
  • cos(A)+cos(B)=2cos(A+B2)cos(A−B2)cos(A)+cos(B)=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})cos(A)+cos(B)=2cos(2A+B)cos(2AB)
  • cos(A)−cos(B)=−2sin(A+B2)sin(A−B2)cos(A)-cos(B)=-2sin(\frac{A+B}{2})sin(\frac{A-B}{2})cos(A)cos(B)=2sin(2A+B)sin(2AB)
    其他三个式子均可采用相同的方法,但前提必须熟悉下面两个式子:
    sin⁡(A±B)=sin⁡(A)cos⁡(B)±cos⁡(A)sin⁡(B)(1−1)\sin (A \pm B) = \sin (A)\cos (B) \pm \cos (A)\sin (B) (1-1)sin(A±B)=sin(A)cos(B)±cos(A)sin(B)11
    cos⁡(A±B) = cos⁡(A)cos⁡(B)∓sin⁡(A)sin⁡(B)(1−2)\cos (A \pm B){\text{ = }}\cos (A)\cos (B) \mp \sin (A)\sin (B) (1-2)cos(A±B) = cos(A)cos(B)sin(A)sin(B)12
    -下面探讨积化和差的方法
    先来熟悉四个基本式子:
  • sin⁡(A)cos⁡(B)=12[sin⁡(A+B)+sin⁡(A−B)]\sin (A)\cos (B) = \frac{1}{2}[\sin (A + B) + \sin (A - B)]sin(A)cos(B)=21[sin(A+B)+sin(AB)]
  • cos⁡(A)sin⁡(B)=12[sin⁡(A+B)−sin⁡(A−B)]\cos (A)\sin (B) = \frac{1}{2}[\sin (A + B) - \sin (A - B)]cos(A)sin(B)=21[sin(A+B)sin(AB)]
  • cos⁡(A)cos⁡(B)=12[cos⁡(A+B)+cos⁡(A−B)]\cos (A)\cos (B) = \frac{1}{2}[\cos (A + B) + \cos (A - B)]cos(A)cos(B)=21[cos(A+B)+cos(AB)]
  • sin⁡(A)sin⁡(B)=−12[cos⁡(A+B)−cos⁡(A−B)]\sin (A)\sin (B) = - \frac{1}{2}[\cos (A + B) - \cos (A - B)]sin(A)sin(B)=21[cos(A+B)cos(AB)]
  • 其实本质上还是(1-1)式、(1-2)式的灵活运用,记住sin(A+B)sin(A+B)sin(A+B)的展开形式只能是sin(A)cos(B)sin(A)cos(B)sin(A)cos(B)cos(A)sin(B)cos(A)sin(B)cos(A)sin(B)的形式,而cos(A+B)cos(A+B)cos(A+B)的展开形式必然只有cos(A)cos(B)cos(A)cos(B)cos(A)cos(B)sin(A)sin(B)sin(A)sin(B)sin(A)sin(B)的形式。这样可以快速帮助我们记忆上式。
  • 总结:和差化积、积化和差虽然高中阶段不要求记忆,但是灵活运用可以极大减小运算量。另外,它在后续大学信号处理类课程中调制解调仍然会发挥巨大的作用。希望这篇文章可以帮助你。谢谢阅读、感谢指正。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值