Can you find it?
Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/10000 K (Java/Others)Total Submission(s): 7515 Accepted Submission(s): 1950
Problem Description
Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.
Input
There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth
line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.
Output
For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".
Sample Input
3 3 3 1 2 3 1 2 3 1 2 3 3 1 4 10
Sample Output
Case 1: NO YES NO这题n^3明显超时,n^2logn也超时。我们可以合并第一个和第二个数组,然后枚举第三个数组,对合并后的数组进行二分。AC代码:#include <iostream> #include <cstring> #include <cstdio> #include <queue> #include <cmath> #include <string> #include <algorithm> using namespace std; int a[505],b[505],c[505],d[300000]; bool BinarySearch(int l,int r,int x) { int mid; while(l<=r) { mid=(l+r)/2; if(d[mid]==x) return true; if(d[mid]>x) r=mid-1; else l=mid+1; } return false; } int main() { int L,N,M,S,x; int ca=0; while(cin>>L>>N>>M) { ca++; for(int i=0; i<L; i++) scanf("%d",&a[i]); for(int i=0; i<N; i++) scanf("%d",&b[i]); for(int i=0; i<M; i++) scanf("%d",&c[i]); sort(c,c+M); int k=0; for(int i=0; i<L; i++) for(int j=0; j<N; j++) d[k++]=a[i]+b[j]; sort(d,d+k); scanf("%d",&S); printf("Case %d:\n",ca); while(S--) { scanf("%d",&x); int flag=0; for(int i=0; i<M; i++) { if(BinarySearch(0,k,x-c[i])) { flag=1; break; } if(flag) break; } if(flag) printf("YES\n"); else printf("NO\n"); } } return 0; }