| Time Limit: 2000MS | Memory Limit: 131072K | |
| Total Submissions: 6461 | Accepted: 1844 |
Description
Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.
Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.
He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?
Input
The input contains exactly one test case.
The first line of the test case contains two integers N, M (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.
M lines follow, each line contains three integers a, b, c, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ a, b < n, c ≤ 100). All the roads are directed.
Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.
Output
Sample Input
2 1 0 1 1
Sample Output
1
参考http://www.cppblog.com/y346491470/articles/152490.html
AC代码:
#include <iostream> #include <cmath> #include <cstdlib> #include <cstring> #include <cstdio> #include <queue> #include <stack> #include <ctime> #include <vector> #include <algorithm> #define ll __int64 using namespace std; const int INF = 1000000000; const int maxn = 10000; struct Edge { int u, v, cap, flow, next; } et[10000000]; vector<int>G[maxn], RG[maxn]; int low[maxn], pre[maxn], cnt[maxn], cur[maxn], dis[maxn], eh[maxn]; int col[maxn]; int s, t, num, n, m; void init() { memset(eh, -1, sizeof(eh)); num = 0; } void add(int u, int v, int cap, int flow) { Edge e = {u, v, cap, flow, eh[u]}; et[num] = e; eh[u] = num++; } void addedge(int u, int v, int cap) { add(u, v, cap, 0); add(v, u, 0, 0); } void isap(int s, int t, int nv) { int u, v, now, flow = 0; memset(low, 0, sizeof(low)); memset(cnt, 0, sizeof(cnt)); memset(dis, 0, sizeof(dis)); for(u = 0; u <= nv; u++) cur[u] = eh[u]; low[s] = INF, cnt[0] = nv, u = s; while(dis[s] < nv) { for(now = cur[u]; now != -1; now = et[now].next) if(et[now].cap - et[now].flow && dis[u] == dis[v = et[now].v] + 1) break; if(now != -1) { cur[u] = pre[v] = now; low[v] = min(low[u], et[now].cap - et[now].flow); u = v; if(u == t) { for(; u != s; u = et[pre[u]].u) { et[pre[u]].flow += low[t]; et[pre[u]^1].flow -= low[t]; } flow += low[t]; low[s] = INF; } } else { if(--cnt[dis[u]] == 0) break; dis[u] = nv, cur[u] = eh[u]; for(now = eh[u]; now != -1; now = et[now].next) if(et[now].cap - et[now].flow && dis[u] > dis[et[now].v] + 1) dis[u] = dis[et[now].v] + 1; cnt[dis[u]]++; if(u != s) u = et[pre[u]].u; } } } void dfs1(int u){ col[u] = 1; for(int i = 0; i < (int)G[u].size(); i++) { int v = G[u][i]; if(!col[v]) dfs1(v); } } void dfs2(int u){ col[u] = 2; for(int i = 0; i < (int)RG[u].size(); i++) { int v = RG[u][i]; if(!col[v]) dfs2(v); } } int main() { int a, b, c; while(~scanf("%d%d", &n, &m)) { init(); s = 0, t = n - 1; while(m--) { scanf("%d%d%d", &a, &b, &c); addedge(a, b, c); } isap(s, t, t + 1); for(int i = 0; i <= n; i++) { G[i].clear(); RG[i].clear(); } queue<int>Q; for(int i = 0; i < num; i += 2) { if(et[i].cap - et[i].flow) { int u = et[i].u, v = et[i].v; G[u].push_back(v); RG[v].push_back(u); } else Q.push(i); } memset(col, 0, sizeof(col)); dfs1(s); dfs2(t); int ans = 0; while(!Q.empty()) { int i = Q.front(); Q.pop(); int u = et[i].u, v = et[i].v; if(col[u] ==1 && col[v] == 2) ans++; } printf("%d\n", ans); } return 0; }

本博客讨论了小国凤凰国如何通过道路重构来提高运输能力的问题,详细阐述了解决方案及背后的数学模型——最大流问题。通过编程实现解决实际问题的方法,展示了将理论应用于实践的过程。
834

被折叠的 条评论
为什么被折叠?



