Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 2590 | Accepted: 1459 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive
powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
题意:对于一个数x(0<x<p),若集合{ (xi mod p) | 1 <= i <= p-1 }等于{ 1, ..., p-1 }.则称x为p的一个原根。给出一个数p,求p的原根的个数。
思路:利用了定理:如果n有原根,那么n的原根的数目就是euler(erler(n));由于题中说n为奇素数,故euler(n)就是(n-1),故答案即为euler(n-1);
AC代码:
#include <iostream> #include <cmath> #include <cstdlib> #include <cstring> #include <cstdio> #include <queue> #include <ctime> #define ll __int64 using namespace std; const int maxn = 70000; int phi[maxn]; int n; void phi_table() { memset(phi, 0, sizeof(phi)); phi[1] = 1; for(int i = 2; i < maxn; i++) if(!phi[i]) { for(int j = i; j < maxn; j += i) { if(!phi[j]) phi[j] = j; phi[j] = phi[j] / i * (i - 1); } } } int main() { phi_table(); while(~scanf("%d", &n)) { printf("%d\n", phi[n - 1]); } return 0; }