一、数据增强方式
random erase
CutOut
MixUp
CutMix
色彩、对比度增强
旋转、裁剪
解决数据不均衡:
Focal loss
hard negative example mining
OHEM
S-OHEM
GHM(较大关注easy和正常hard样本,较少关注outliners)
PISA
二、常用backbone
三、常用Head
Dense Prediction (one-stage):
Sparse Prediction (two-stage):
Path-aggregation blocks:
五、Skip-connections
六、常用激活函数和loss
七、正则化和BN方式
八、训练技巧
Label Smoothing
Warm Up