“label“: “road_congestion“,

第一章:Dify插件错误处理机制概述

Dify作为一个支持插件扩展的低代码开发平台,其插件系统在提升功能灵活性的同时,也引入了潜在的运行时异常风险。为了保障系统的稳定性与可维护性,Dify构建了一套结构化的错误处理机制,能够在插件加载、执行和通信过程中有效捕获、记录并响应各类异常。

错误类型识别

Dify插件可能遇到的错误主要包括以下几类:
  • 加载失败:插件文件缺失或格式不正确
  • 依赖缺失:所需模块未注册或版本不兼容
  • 运行时异常:代码执行中抛出未捕获的异常
  • 通信超时:与主应用或其他插件交互超时

异常捕获与日志记录

Dify在插件沙箱环境中内置了全局异常拦截器,确保所有错误均能被捕获而不影响主流程。以下为典型的错误拦截代码结构:
// 注册插件全局错误处理器
window.addEventListener('unhandledrejection', (event) => {
  console.error('[Dify Plugin] Unhandled promise rejection:', event.reason);
  event.preventDefault(); // 阻止默认行为,交由Dify统一处理
});

process.on('uncaughtException', (err) => {
  console.error('[Dify Plugin] Uncaught exception:', err);
  // 触发上报机制
  reportPluginError(err, 'uncaught');
});

错误上报与恢复策略

当检测到插件异常后,Dify会根据错误级别采取不同措施。下表展示了常见错误类型及其处理策略:
错误类型上报方式恢复动作
轻量级运行时错误异步日志上报尝试重试操作
严重初始化失败实时告警 + 日志禁用插件并提示用户
资源加载失败本地缓存记录切换备用源或降级功能
graph TD A[插件触发操作] --> B{是否发生异常?} B -->|是| C[捕获错误并封装上下文] B -->|否| D[正常返回结果] C --> E[记录日志并上报] E --> F{错误是否可恢复?} F -->|是| G[执行恢复逻辑] F -->|否| H[禁用插件并通知用户]

第二章:Dify插件常见错误类型分析

2.1 插件调用失败的网络与认证问题

在分布式系统中,插件调用常因网络不稳定或认证机制异常导致失败。最常见的表现是超时、连接拒绝或401/403响应。
典型错误场景
  • 目标服务未开启HTTPS,导致双向认证失败
  • API网关未正确传递JWT令牌
  • DNS解析失败或服务注册未完成
认证头缺失示例
GET /api/v1/plugin/status HTTP/1.1
Host: plugin-service.example.com
User-Agent: curl/7.68.0
Accept: */*
该请求缺少Authorization: Bearer <token>头,将被认证中间件拦截。
排查建议
可通过以下表格快速定位问题层级:
现象可能原因
连接超时网络隔离、防火墙策略
401 UnauthorizedToken过期或签名无效

2.2 数据格式异常导致的解析错误

在数据交换过程中,格式不规范是引发解析失败的常见原因。例如,JSON 字段缺失或类型错误会导致反序列化异常。
典型异常场景
  • 预期为整型的字段传入字符串
  • 必填字段为空或未返回
  • 时间格式不符合 ISO 8601 标准
代码示例与分析
{
  "user_id": "123abc",
  "login_time": "2023-10-01 10:30"
}
上述 JSON 中,user_id 应为数值类型但传入字符串,login_time 缺少时区标识。解析时易引发类型转换异常或时区误判。
校验策略建议
检查项处理方式
字段类型预定义 Schema 校验
时间格式统一转换为 RFC3339

2.3 第三方服务不可用时的响应策略

当依赖的第三方服务出现不可用情况时,系统需具备弹性应对能力,避免级联故障。合理的响应策略可显著提升系统的可用性与用户体验。
降级机制设计
在服务异常时,可通过返回默认值、缓存数据或简化逻辑实现功能降级。例如:
// 检查第三方服务状态,失败时降级
func GetData() (string, error) {
    result, err := callThirdParty()
    if err != nil {
        log.Warn("Third-party service failed, using fallback")
        return getCachedData(), nil // 返回缓存数据
    }
    return result, nil
}
该函数优先调用远程服务,失败后自动切换至本地缓存,保障核心流程继续运行。
重试与熔断策略
结合指数退避重试和熔断器模式,防止雪崩效应。推荐配置如下:
策略参数说明
重试次数3次避免频繁无效请求
初始间隔100ms配合指数增长
熔断阈值50%错误率触发熔断保护

2.4 超时与重试机制的设计实践

在分布式系统中,网络波动和临时性故障难以避免,合理的超时与重试机制是保障服务稳定性的关键。
超时设置原则
应根据接口的SLA设定合理超时时间,避免过短导致误判或过长阻塞资源。例如,在Go语言中可使用上下文控制:
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
defer cancel()
result, err := client.DoRequest(ctx)
该代码片段通过context.WithTimeout限制请求最长执行时间为3秒,防止无限等待。
智能重试策略
简单重试可能加剧系统负载,推荐采用指数退避加随机抖动:
  • 首次失败后等待1秒
  • 第二次等待2秒,第三次4秒
  • 加入±50%随机抖动避免雪崩
重试次数等待间隔(秒)
11.0 ± 0.5
22.0 ± 1.0
34.0 ± 2.0

2.5 输入校验不严引发的运行时异常

在软件开发中,输入校验是保障系统稳定性的第一道防线。若忽视对用户输入的合法性验证,极易导致各类运行时异常。
常见异常类型
典型的因输入校验缺失引发的异常包括:
  • 空指针异常(NullPointerException)
  • 类型转换异常(ClassCastException)
  • 数组越界异常(ArrayIndexOutOfBoundsException)
代码示例与分析

public int divide(int a, int b) {
    return a / b; // 未校验 b 是否为 0
}
上述方法未对除数 b 做零值判断,当输入为 0 时将抛出 ArithmeticException。正确的做法是在运算前添加校验逻辑:

if (b == 0) {
    throw new IllegalArgumentException("除数不能为零");
}

第三章:错误处理的核心设计原则

3.1 可靠性优先:构建健壮的容错机制

在分布式系统中,可靠性是系统设计的核心目标之一。面对网络分区、节点故障等常见问题,构建健壮的容错机制至关重要。
错误检测与自动恢复
通过心跳机制和健康检查可及时发现故障节点。一旦检测到异常,系统应触发自动恢复流程,例如主从切换或任务重调度。
冗余与数据复制
采用多副本策略确保数据高可用。以下为基于Raft协议的日志复制示例:

type Raft struct {
    term     int
    leaderId int
    log      []LogEntry // 日志条目支持故障后数据同步
}
// 当前任期号用于选举和命令合法性校验
// leaderId 用于客户端重定向请求
该结构体中的 termlog 字段协同工作,确保状态机一致性。
  • 心跳超时触发新一轮选举
  • 多数派确认日志写入以保障数据不丢失
  • 领导者负责协调所有写操作

3.2 错误信息标准化:提升调试效率

在分布式系统中,错误信息的格式混乱会显著增加排查成本。通过统一错误码、消息结构和日志上下文,可大幅提升调试效率。
标准化错误结构
建议采用统一的错误响应格式,包含错误码、消息和可选详情:
{
  "code": "USER_NOT_FOUND",
  "message": "指定用户不存在",
  "details": {
    "userId": "12345"
  }
}
该结构便于前端条件处理和日志分析系统自动归类。
错误码设计规范
  • 使用语义化字符串而非数字码,如 INVALID_PARAM
  • 按模块划分前缀,如 AUTH_DB_
  • 配套维护错误码文档,说明触发条件与解决方案
上下文注入机制
通过中间件自动注入请求ID、时间戳等信息,使每条错误日志均可追溯链路,结合ELK实现快速定位。

3.3 上下文追踪:结合日志与链路监控

在分布式系统中,单一请求可能跨越多个服务节点,传统的日志记录难以串联完整调用路径。引入上下文追踪机制,可将一次请求的唯一标识(Trace ID)贯穿于各服务的日志与链路监控中,实现精准问题定位。
Trace ID 的注入与传播
通过中间件在请求入口处生成 Trace ID,并将其注入到日志上下文中:
func TraceMiddleware(next http.Handler) http.Handler {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        traceID := uuid.New().String()
        ctx := context.WithValue(r.Context(), "trace_id", traceID)
        // 注入到日志字段
        logger := log.With("trace_id", traceID)
        next.ServeHTTP(w, r.WithContext(ctx))
    })
}
上述代码在 HTTP 中间件中为每个请求生成唯一 Trace ID,并绑定至上下文和日志实例。后续业务逻辑中,所有日志输出自动携带该 ID,便于聚合分析。
日志与链路数据关联
通过统一字段(如 trace_id)将 APM 链路数据与后端日志平台(如 ELK)关联,可在 Kibana 中直接跳转查看完整调用链与详细日志片段,显著提升排障效率。

第四章:实战中的错误处理模式

4.1 使用try-catch封装插件调用逻辑

在插件化架构中,外部模块的稳定性无法完全保证,因此必须通过异常捕获机制隔离风险。使用 try-catch 封装插件调用是保障主系统健壮性的关键实践。
异常隔离与容错处理
通过 try-catch 包裹插件执行逻辑,可防止因插件崩溃导致整个应用中断。捕获异常后可执行降级策略或记录错误上下文。

try {
  const result = plugin.execute(data);
  return { success: true, data: result };
} catch (error) {
  logger.error(`Plugin ${plugin.name} failed:`, error.message);
  return { success: false, error: 'Plugin execution failed' };
}
上述代码中,插件执行被包裹在 try 块中,一旦抛出异常即被捕获。错误信息被记录并返回结构化失败响应,确保调用方能安全处理结果。
最佳实践建议
  • 始终记录插件异常的堆栈信息以便排查
  • 对不同类型的插件设置独立的超时和重试机制
  • 返回统一格式的响应结构,简化上层处理逻辑

4.2 实现降级策略应对关键依赖故障

在分布式系统中,关键依赖如数据库、第三方API或消息队列可能因网络波动、服务宕机等原因不可用。为保障核心业务链路的可用性,需设计合理的降级策略,在依赖异常时切换至备用逻辑。
常见降级方案
  • 返回默认值:如用户服务不可用时返回空用户信息;
  • 缓存兜底:使用Redis中旧数据响应请求;
  • 异步化处理:将同步调用转为消息队列异步执行。
基于Hystrix的降级示例

@HystrixCommand(fallbackMethod = "getDefaultUser")
public User getUserById(String uid) {
    return userService.fetch(uid);
}

private User getDefaultUser(String uid) {
    return new User(uid, "default");
}
上述代码通过@HystrixCommand注解指定降级方法,在主逻辑失败时自动调用getDefaultUser返回兜底数据,保障接口可用性。

4.3 异常上报与用户提示的平衡设计

在系统设计中,异常处理既要保障开发团队及时获取错误信息,又不能频繁打扰用户。需根据异常级别决定是否向用户提示。
分级上报策略
通过定义异常等级实现差异化处理:
  • Level 1(严重):崩溃类错误,自动上报并提示“服务异常,请稍后重试”
  • Level 2(警告):功能降级,静默上报,不提示用户
  • Level 3(调试):仅本地日志记录
代码示例:异常处理器
func HandleError(err error, level int) {
    logToServer(err, level) // 上报至监控平台
    if level == 1 {
        ShowUserAlert("操作失败,请检查网络")
    }
}
该函数根据等级决定是否弹出提示。关键逻辑在于隔离上报与展示行为,避免低级别异常干扰用户体验。

4.4 模拟故障测试插件恢复能力

在高可用系统设计中,验证插件的故障恢复能力至关重要。通过主动注入网络延迟、服务中断等异常场景,可评估其容错与自愈机制。
故障注入配置示例

fault_injection:
  enabled: true
  type: delay
  delay_ms: 5000
  error_rate: 0.3
该配置模拟30%请求延迟5秒,用于测试插件在极端响应延迟下的重试与超时处理逻辑。参数 error_rate 控制故障触发概率,便于灰度验证。
恢复行为观测指标
指标名称预期表现
重连成功率>95%
状态恢复时间<10s

第五章:未来优化方向与生态演进

随着云原生和边缘计算的快速发展,系统架构正朝着更轻量、更智能的方向演进。微服务治理不再局限于服务发现与熔断,而是向可观测性与自适应调优延伸。
智能化弹性调度
现代Kubernetes集群已支持基于AI预测的HPA(Horizontal Pod Autoscaler)。通过历史负载训练模型,提前扩容应对流量高峰。例如,使用Prometheus长期存储指标,并结合Grafana ML插件进行趋势预测:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: ml-driven-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: user-service
  metrics:
  - type: External
    external:
      metric:
        name: predicted_qps
      target:
        type: AverageValue
        averageValue: "1000"
模块化服务网格扩展
Istio的WASM插件机制允许在Sidecar中动态注入定制逻辑。某电商平台利用此能力,在不重启服务的前提下,热更新风控规则:
  • 编写WASM模块处理JWT签权增强
  • 通过Istio Telemetry V2推送至特定命名空间
  • 实时监控请求拦截率与延迟变化
绿色计算与能效优化
策略节能效果适用场景
CPU节流 + 批处理38%后台任务队列
冷启动预加载池22%Serverless函数

架构演化路径:

单体 → 微服务 → 服务网格 → 函数即服务 → 智能代理协同

每阶段引入新挑战:从网络可靠性到上下文感知调度

import numpy as np import pandas as pd import matplotlib.pyplot as plt import simpy from pulp import LpMinimize, LpProblem, LpVariable import seaborn as sns from scipy.stats import gamma # 设置中文显示 plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"] plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 class SharedVehicleEvaluationSystem: """共享车辆评估系统,用于分析不同类型共享车辆的引入对系统性能的影响""" def __init__(self, config=None): """初始化评估系统""" self.config = config or { 'total_vehicles': 1000, # 车辆总数 'simulation_days': 30, # 仿真天数 'scenarios': ['base', 'cost_sensitive', 'distance_sensitive', 'mixed_cost_performance'] # 仿真场景 } self.user_profiles = None self.vehicle_costs = None self.road_capacity = None self.results = {} def prepare_data(self): """准备评估所需的数据""" # 用户群体参数 self.user_profiles = pd.DataFrame({ 'age_group': ['18-25', '26-35', '36-45', '46+'], 'bike_preference': [0.6, 0.4, 0.3, 0.5], 'ebike_preference': [0.3, 0.5, 0.4, 0.3], 'moped_preference': [0.1, 0.1, 0.3, 0.2], 'trip_frequency': [14, 10, 8, 6], # 每周出行次数 'avg_trip_distance': [3.2, 5.7, 4.1, 2.8], # 平均出行距离(km) 'income_level': [2, 3, 3, 2], # 收入水平(1-5) 'cost_sensitivity': [0.8, 0.6, 0.5, 0.7], # 成本敏感度(1-10) 'time_sensitivity': [0.7, 0.9, 0.8, 0.6] # 时间敏感度(1-10) }) # 车辆成本参数 self.vehicle_costs = { 'bike': { 'purchase': 300, # 购置成本(元) 'maintenance': 0.5, # 每日维护成本(元) 'lifespan': 3, # 使用寿命(年) 'max_speed': 15, # 最高速度(km/h) 'energy_cost': 0, # 能源成本(元/公里) 'fixed_ride_fee': 1, # 固定骑行费用(元) 'variable_fee_rate': 0.5 # 可变费用率(元/公里) }, 'ebike': { 'purchase': 1200, 'maintenance': 1.5, 'battery_replacement': 300, # 电池更换成本(元/次) 'battery_life': 300, # 电池寿命(公里) 'battery_capacity': 10, # 电池容量(km/次充电) 'charging_time': 2, # 充电时间(小时) 'charging_cost': 0.8, # 充电成本(元/次) 'lifespan': 2, 'max_speed': 25, 'energy_cost': 0.02, # 充电成本(元/公里) 'fixed_ride_fee': 2, 'variable_fee_rate': 0.8 # 'purchase': 2000, # 'maintenance': 1.5, # 'battery_replacement': 300, # 电池更换成本(元/次) # 'battery_life': 300, # 电池寿命(公里) # 'battery_capacity': 40, # 电池容量(km/次充电) # 'charging_time': 4, # 充电时间(小时) # 'charging_cost': 0.8, # 充电成本(元/次) # 'lifespan': 2, # 'max_speed': 25, # 'energy_cost': 0.0375, # 充电成本(元/公里) # 'fixed_ride_fee': 2, # 'variable_fee_rate': 0.8 }, 'moped': { # 'purchase': 4000, # 'maintenance': 2.5, # 'battery_replacement': 800, # 电池更换成本(元/次) # 'battery_life': 20000, # 电池寿命(公里) # 'battery_capacity': 90, # 电池容量(km/次充电) # 'charging_time': 2, # 充电时间(小时) # 'charging_cost': 2, # 充电成本(元/次) # 'lifespan': 3, # 'max_speed': 25, # 'energy_cost': 0.018, # 充电成本(元/公里) # 'fixed_ride_fee': 2, # 'variable_fee_rate': 0.12 'purchase': 2000, 'maintenance': 2.0, 'fuel_cost': 0.3, # 燃料成本(元/公里) 'lifespan': 4, 'max_speed': 40, 'energy_cost': 0.03, # 能源成本(元/公里) 'fixed_ride_fee': 3, 'variable_fee_rate': 1.2 } } # 道路承载能力参数 self.road_capacity = { 'bike_lane': { 'bike': 1.0, # 相对占用空间 'ebike': 1.2, 'moped': 1.5 }, 'mixed_traffic': { 'bike': 0.5, 'ebike': 0.7, 'moped': 1.0 }, 'max_flow': { 'bike_lane': 1500, # 自行车道最大流量(辆/小时) 'mixed_traffic': 3000 # 混合车道最大流量(辆/小时) } } return self.user_profiles, self.vehicle_costs, self.road_capacity def calculate_trip_cost(self, user, vehicle_type, distance): """计算特定用户使用特定车辆类型的出行成本""" # 获取车辆的费用结构 vehicle = self.vehicle_costs[vehicle_type] # 基础费用 base_cost = vehicle['fixed_ride_fee'] # 距离相关费用 distance_cost = vehicle['variable_fee_rate'] * distance # 能源/燃料费用 energy_cost = vehicle['energy_cost'] * distance # 如果是电动车,考虑电池更换成本 if vehicle_type == 'ebike': battery_replacement_cost = (distance / vehicle['battery_life']) * vehicle['battery_replacement'] else: battery_replacement_cost = 0 # 总成本 total_cost = base_cost + distance_cost + energy_cost + battery_replacement_cost # 考虑用户收入水平对感知成本的影响 perceived_cost = total_cost * (1 + (5 - user['income_level']) * 0.1) return perceived_cost def calculate_trip_time(self, origin, destination, vehicle_type, road_network, congestion_factor=1.0): """计算出行时间,考虑距离、车辆速度和道路拥堵情况""" # 计算欧氏距离(简化) distance = np.sqrt((destination[0] - origin[0]) ** 2 + (destination[1] - origin[1]) ** 2) # 获取车辆速度 speed = self.vehicle_costs[vehicle_type]['max_speed'] # 考虑道路类型对速度的影响(简化) road_type = 'bike_lane' if distance < 5 else 'mixed_traffic' road_efficiency = 0.9 if road_type == 'bike_lane' else 0.7 # 考虑拥堵因素 effective_speed = speed * road_efficiency / congestion_factor # 计算出行时间(分钟) travel_time = (distance / effective_speed) * 60 # 添加随机波动 travel_time *= np.random.uniform(0.9, 1.1) # 如果是电动车,考虑电池耗尽需要充电的情况 if vehicle_type == 'ebike': battery_capacity = self.vehicle_costs['ebike']['battery_capacity'] if distance > battery_capacity: # 需要充电 charging_times = int(distance / battery_capacity) travel_time += charging_times * self.vehicle_costs['ebike']['charging_time'] * 60 return travel_time def calculate_congestion(self, vehicle_counts, road_network): """计算道路拥堵因子,基于当前车辆数量和道路容量""" # 假设城市中有不同类型的道路,每种道路占比不同 road_types = { 'bike_lane': 0.6, # 自行车道占60% 'mixed_traffic': 0.4 # 混合车道占40% } # 计算每种道路类型的车辆密度 congestion_factors = {} for road_type, proportion in road_types.items(): # 计算该类型道路上的车辆数量 road_vehicles = 0 for vehicle_type, count in vehicle_counts.items(): road_vehicles += count * road_network[road_type][vehicle_type] # 计算车辆密度(辆/公里) road_length = 100 * proportion # 假设城市总道路长度为100公里 density = road_vehicles / road_length # 计算拥堵因子(基于最大流量) max_density = road_network['max_flow'][road_type] / 30 # 假设平均车速30km/h congestion_factor = max(1.0, density / max_density) congestion_factors[road_type] = congestion_factor # 计算综合拥堵因子(加权平均) overall_congestion = sum(congestion_factors[rt] * p for rt, p in road_types.items()) return overall_congestion def user_choice_model(self, user, vehicles, scenario='base'): """用户选择模型,基于效用最大化理论预测用户对不同车辆的选择概率""" # 计算每种车辆的效用值 utilities = {} # 检查是否有出行距离信息 has_distance = 'trip_distance' in user and not np.isnan(user['trip_distance']) for vehicle_type, params in vehicles.items(): # 基础效用 = 偏好系数 * 场景调整 utility = user[f'{vehicle_type}_preference'] # 根据场景调整基础偏好 if scenario == 'cost_sensitive': utility *= 1.2 if vehicle_type == 'bike' else 0.8 elif scenario == 'distance_sensitive': utility *= 1.2 if vehicle_type in ['ebike', 'moped'] else 0.8 elif scenario == 'mixed_cost_performance': if vehicle_type == 'bike': utility *= 0.9 # 中等偏好 elif vehicle_type == 'ebike': utility *= 1.1 # 较高偏好 else: # moped utility *= 1.0 # 中等偏好 # 考虑成本因素 if has_distance: # 计算出行成本 trip_cost = self.calculate_trip_cost(user, vehicle_type, user['trip_distance']) # 成本带来的负效用(考虑用户成本敏感度) utility -= user['cost_sensitivity'] * 0.05 * trip_cost # 考虑距离因素 if has_distance: distance = user['trip_distance'] # 不同车辆类型在不同距离上的适用性 if vehicle_type == 'bike': # 自行车在短距离上更有优势 utility += max(0, 0.3 - 0.05 * distance) elif vehicle_type == 'ebike': # 电动车在中距离上更有优势 utility += max(0, -0.2 + 0.05 * distance, 0.4 - 0.03 * distance) else: # moped # 助力车在长距离上更有优势 utility += max(0, -0.3 + 0.06 * distance) # 考虑时间因素(影响出行时间) if has_distance: # 估计出行时间(分钟) travel_time = self.calculate_trip_time( user['origin'], user['destination'], vehicle_type, self.road_capacity ) # 时间带来的负效用(考虑用户时间敏感度) utility -= user['time_sensitivity'] * 0.01 * travel_time # 考虑车辆可用性(供应影响) if params > 0: availability_factor = 1.0 - (1.0 / (1 + np.exp(-params / 100))) utility *= availability_factor utilities[vehicle_type] = utility # 基于效用计算选择概率(softmax函数) exp_utilities = np.exp(list(utilities.values())) probabilities = exp_utilities / np.sum(exp_utilities) return dict(zip(utilities.keys(), probabilities)) def run_simulation(self, scenario='base'): """运行系统仿真""" # 创建仿真环境 env = simpy.Environment() # 初始化车辆数量(基于成本分析的最优配置) vehicle_fleet = self.config['total_vehicles'] # 记录系统性能指标 performance = { 'wait_time': [], 'utilization': {'bike': [], 'ebike': [], 'moped': []}, 'congestion': [], 'mode_share': {'bike': [], 'ebike': [], 'moped': []}, 'total_trips': 0, 'unsatisfied_demand': 0, 'daily_utilization': {'bike': [], 'ebike': [], 'moped': []}, 'vehicle_km': {'bike': 0, 'ebike': 0, 'moped': 0}, # 记录每种车辆的总行驶公里数 'trip_cost': {'bike': [], 'ebike': [], 'moped': []}, # 记录每种车辆的出行成本 'choice_probabilities': [] # 记录用户选择概率的每日变化 } # 初始车辆配置(使用成本分析的结果) usage_data = { 'ebike': 5.0, # 假设电动车平均每次出行5公里 'moped': 8.0, # 假设助力车平均每次出行8公里 'total_trips': 1000 # 假设总出行次数 } cost_results = self.cost_analysis(vehicle_fleet, usage_data, scenario) # 基于成本分析结果初始化车辆配置 vehicles = { 'bike': int(cost_results['bike_count']), 'ebike': int(cost_results['ebike_count']), 'moped': int(cost_results['moped_count']) } print(f"场景 '{scenario}' 初始车辆配置: {vehicles}") # 创建仿真进程 sim_process = env.process(self.system_simulation(env, vehicles, scenario, performance)) # 运行仿真直到结束 env.run(until=self.config['simulation_days']) # 从仿真进程中获取返回值 if sim_process.triggered : results = sim_process.value if results: performance.update(results) else: print(f"警告: 仿真进程未正常完成 (状态: {sim_process})") return performance # def system_simulation(self, env, vehicles, scenario, performance): # """系统仿真模型,模拟用户使用共享车辆的过程""" # # 模拟城市区域 # city_area = (10, 10) # # # 记录每日数据 # daily_utilized = {'bike': 0, 'ebike': 0, 'moped': 0} # daily_total = 0 # daily_choice_probs = {'bike': [], 'ebike': [], 'moped': []} # # # 创建一个结束事件 # end_event = env.event() # # # 安排一个进程在仿真结束时触发事件 # def trigger_end_event(): # yield env.timeout(self.config['simulation_days']) # end_event.succeed() # # env.process(trigger_end_event()) # # # 主仿真循环 # while not end_event.triggered: # current_day = int(env.now) # # print('current_day',current_day) # # exit() # # 重置每日计数器 # if env.now == 0 or (env.now > 0 and env.now % 1 == 0): # if env.now > 0: # # 计算并记录每日模式分担率 # total_utilized = sum(daily_utilized.values()) # for vt in ['bike', 'ebike', 'moped']: # if total_utilized > 0: # share = daily_utilized[vt] / total_utilized # else: # share = 0 # performance['mode_share'][vt].append(share) # performance['daily_utilization'][vt].append(daily_utilized[vt]) # # # 记录每日选择概率 # avg_choice_probs = {vt: np.mean(daily_choice_probs[vt]) if daily_choice_probs[vt] else 0 for vt in # ['bike', 'ebike', 'moped']} # performance['choice_probabilities'].append(avg_choice_probs) # # daily_utilized = {vt: 0 for vt in daily_utilized} # daily_total = 0 # daily_choice_probs = {'bike': [], 'ebike': [], 'moped': []} # # # 生成用户请求 # daily_trips = 0 # daily_unsatisfied = 0 # # for _, user in self.user_profiles.iterrows(): # # 根据用户类型调整每日出行频率 # adjusted_frequency = max(0.1, user['trip_frequency'] / 7) # # # 使用泊松分布生成每日实际出行次数 # actual_trips = np.random.poisson(adjusted_frequency) # actual_trips = max(actual_trips, 0) # # for _ in range(actual_trips): # # 随机生成起点和终点 # origin = (np.random.uniform(0, city_area[0]), np.random.uniform(0, city_area[1])) # destination = (np.random.uniform(0, city_area[0]), np.random.uniform(0, city_area[1])) # # # 计算出行距离 # trip_distance = np.sqrt((destination[0] - origin[0]) ** 2 + (destination[1] - origin[1]) ** 2) # # # 创建包含距离信息的用户数据 # user_with_trip = user.copy() # user_with_trip['trip_distance'] = trip_distance # user_with_trip['origin'] = origin # user_with_trip['destination'] = destination # # # 用户选择车辆 # choice_probs = self.user_choice_model(user_with_trip, vehicles, scenario) # # # 记录选择概率 # for vt in ['bike', 'ebike', 'moped']: # daily_choice_probs[vt].append(choice_probs[vt]) # # vehicle_type = np.random.choice( # list(choice_probs.keys()), # p=list(choice_probs.values()) # ) # # daily_trips += 1 # daily_total += 1 # # # 计算本次出行成本 # trip_cost = self.calculate_trip_cost(user_with_trip, vehicle_type, trip_distance) # performance['trip_cost'][vehicle_type].append(trip_cost) # # # 模拟车辆使用过程 # if vehicles[vehicle_type] > 0: # # 有可用车辆 # vehicles[vehicle_type] -= 1 # daily_utilized[vehicle_type] += 1 # # # 计算拥堵因子 # congestion = self.calculate_congestion(vehicles, self.road_capacity) # performance['congestion'].append(congestion) # # # 计算出行时间 # trip_time = self.calculate_trip_time( # origin, destination, vehicle_type, self.road_capacity, congestion # ) # # # 更新系统性能指标 # performance['wait_time'].append(0) # 有车可用,等待时间为0 # performance['utilization'][vehicle_type].append(1) # # # 记录行驶公里数 # performance['vehicle_km'][vehicle_type] += trip_distance # # # 车辆返回 # yield env.timeout(trip_time / 60) # 转换为小时 # vehicles[vehicle_type] += 1 # else: # # 无车可用 # daily_unsatisfied += 1 # # # 记录等待时间(假设用户等待一段时间后取消) # wait_time = np.random.gamma(2, 2) # 平均4分钟 # performance['wait_time'].append(wait_time) # performance['utilization'][vehicle_type].append(0) # # yield env.timeout(wait_time / 60) # 转换为小时 # # # 记录每日统计数据 # if daily_trips > 0: # performance['total_trips'] += daily_trips # performance['unsatisfied_demand'] += daily_unsatisfied # # # 等待下一天或仿真结束 # if not end_event.triggered: # yield env.timeout(1) # # # 计算最终的模式分担率 # total_utilized = sum(sum(performance['utilization'][vt]) for vt in ['bike', 'ebike', 'moped']) # if total_utilized == 0: # total_utilized = 1 # # for vt in ['bike', 'ebike', 'moped']: # share = sum(performance['utilization'][vt]) / total_utilized # performance['mode_share'][vt].append(share) # # return performance # def system_simulation(self, env, vehicles, scenario, performance): # """系统仿真模型,模拟用户使用共享车辆的过程""" # # 模拟城市区域 # city_area = (10, 10) # # # 新增:定义一天中的时间段及其权重(可根据实际情况调整) # time_periods = { # 'morning_peak': (6, 10, 1.2), # 早高峰:6-10点,权重1.2 # 'midday': (10, 16, 0.9), # 中午:10-16点,权重0.9 # 'evening_peak': (16, 19, 1.3), # 晚高峰:16-19点,权重1.3 # 'night': (19, 24, 1.0), # 夜间:19-24点,权重1.0 # 'early_morning': (0, 6, 0.7) # 凌晨:0-6点,权重0.7 # } # # # 记录每日数据 # daily_utilized = {'bike': 0, 'ebike': 0, 'moped': 0} # daily_total = 0 # daily_choice_probs = {'bike': [], 'ebike': [], 'moped': []} # # # 新增:记录按时间段和用户类型的选择概率 # period_choice_probs = {period: {'bike': [], 'ebike': [], 'moped': []} for period in time_periods} # user_type_choice_probs = {age_group: {'bike': [], 'ebike': [], 'moped': []} # for age_group in self.user_profiles['age_group'].unique()} # # # 新增:记录实际选择结果与预测概率的对比 # actual_choices = {'bike': 0, 'ebike': 0, 'moped': 0} # predicted_choices = {'bike': 0, 'ebike': 0, 'moped': 0} # # # 创建一个结束事件 # end_event = env.event() # # # 安排一个进程在仿真结束时触发事件 # def trigger_end_event(): # yield env.timeout(self.config['simulation_days']) # end_event.succeed() # # env.process(trigger_end_event()) # # # 主仿真循环 # while not end_event.triggered: # current_day = int(env.now) # current_time = env.now % 24 # 当前时间(0-24小时) # # # 确定当前时间段 # current_period = None # for period, (start, end, _) in time_periods.items(): # if start <= current_time < end: # current_period = period # break # # # 重置每日计数器 # if env.now == 0 or (env.now > 0 and env.now % 1 == 0): # print('env.now',env.now) # if env.now > 0: # # 计算并记录每日模式分担率 # total_utilized = sum(daily_utilized.values()) # for vt in ['bike', 'ebike', 'moped']: # if total_utilized > 0: # share = daily_utilized[vt] / total_utilized # else: # share = 0 # performance['mode_share'][vt].append(share) # performance['daily_utilization'][vt].append(daily_utilized[vt]) # # # 记录每日选择概率 # avg_choice_probs = {vt: np.mean(daily_choice_probs[vt]) if daily_choice_probs[vt] else 0 for vt in # ['bike', 'ebike', 'moped']} # performance['choice_probabilities'].append(avg_choice_probs) # # # 新增:记录按时间段的平均选择概率 # for period in time_periods: # for vt in ['bike', 'ebike', 'moped']: # if period_choice_probs[period][vt]: # avg_prob = np.mean(period_choice_probs[period][vt]) # performance[f'period_{period}_choice_prob'][vt].append(avg_prob) # # # 新增:计算预测与实际选择的差异 # total_predicted = sum(predicted_choices.values()) # total_actual = sum(actual_choices.values()) # # if total_predicted > 0 and total_actual > 0: # for vt in ['bike', 'ebike', 'moped']: # pred_share = predicted_choices[vt] / total_predicted # actual_share = actual_choices[vt] / total_actual # performance['pred_actual_diff'][vt].append(actual_share - pred_share) # # # 重置计数器 # daily_utilized = {vt: 0 for vt in daily_utilized} # daily_total = 0 # daily_choice_probs = {'bike': [], 'ebike': [], 'moped': []} # # # 重置时间段选择概率记录 # for period in time_periods: # period_choice_probs[period] = {'bike': [], 'ebike': [], 'moped': []} # # # 重置预测与实际选择计数器 # actual_choices = {'bike': 0, 'ebike': 0, 'moped': 0} # predicted_choices = {'bike': 0, 'ebike': 0, 'moped': 0} # # # 生成用户请求 # daily_trips = 0 # daily_unsatisfied = 0 # # for _, user in self.user_profiles.iterrows(): # age_group = user['age_group'] # # # 根据用户类型和时间段调整每日出行频率 # period_weight = time_periods[current_period][2] if current_period else 1.0 # adjusted_frequency = max(0.1, user['trip_frequency'] / 7 * period_weight) # # # 使用泊松分布生成每日实际出行次数 # actual_trips = np.random.poisson(adjusted_frequency) # actual_trips = max(actual_trips, 0) # # for _ in range(actual_trips): # # 随机生成起点和终点 # origin = (np.random.uniform(0, city_area[0]), np.random.uniform(0, city_area[1])) # destination = (np.random.uniform(0, city_area[0]), np.random.uniform(0, city_area[1])) # # # 计算出行距离 # trip_distance = np.sqrt((destination[0] - origin[0]) ** 2 + (destination[1] - origin[1]) ** 2) # # # 创建包含距离信息的用户数据 # user_with_trip = user.copy() # user_with_trip['trip_distance'] = trip_distance # user_with_trip['origin'] = origin # user_with_trip['destination'] = destination # user_with_trip['time_period'] = current_period # 新增:添加时间段信息 # # # 用户选择车辆(使用实时车辆数量) # choice_probs = self.user_choice_model(user_with_trip, vehicles, scenario) # # # 记录预测的选择次数 # for vt in ['bike', 'ebike', 'moped']: # predicted_choices[vt] += choice_probs[vt] # # # 记录选择概率 # for vt in ['bike', 'ebike', 'moped']: # daily_choice_probs[vt].append(choice_probs[vt]) # # # 按时间段记录 # if current_period: # period_choice_probs[current_period][vt].append(choice_probs[vt]) # # # 按用户类型记录 # user_type_choice_probs[age_group][vt].append(choice_probs[vt]) # # # 实际选择车辆 # vehicle_type = np.random.choice( # list(choice_probs.keys()), # p=list(choice_probs.values()) # ) # # # 记录实际选择 # actual_choices[vehicle_type] += 1 # # daily_trips += 1 # daily_total += 1 # # # 计算本次出行成本 # trip_cost = self.calculate_trip_cost(user_with_trip, vehicle_type, trip_distance) # performance['trip_cost'][vehicle_type].append(trip_cost) # # # 模拟车辆使用过程 # if vehicles[vehicle_type] > 0: # # 有可用车辆 # vehicles[vehicle_type] -= 1 # daily_utilized[vehicle_type] += 1 # # # 计算拥堵因子(使用实时车辆数量) # congestion = self.calculate_congestion(vehicles, self.road_capacity) # performance['congestion'].append(congestion) # # # 计算出行时间 # trip_time = self.calculate_trip_time( # origin, destination, vehicle_type, self.road_capacity, congestion # ) # # # 更新系统性能指标 # performance['wait_time'].append(0) # 有车可用,等待时间为0 # performance['utilization'][vehicle_type].append(1) # # # 记录行驶公里数 # performance['vehicle_km'][vehicle_type] += trip_distance # # # 车辆返回 # yield env.timeout(trip_time / 60) # 转换为小时 # vehicles[vehicle_type] += 1 # else: # # 无车可用 # daily_unsatisfied += 1 # # # 记录等待时间(假设用户等待一段时间后取消) # wait_time = np.random.gamma(2, 2) # 平均4分钟 # performance['wait_time'].append(wait_time) # performance['utilization'][vehicle_type].append(0) # # yield env.timeout(wait_time / 60) # 转换为小时 # # # 记录每日统计数据 # if daily_trips > 0: # performance['total_trips'] += daily_trips # performance['unsatisfied_demand'] += daily_unsatisfied # # # 等待下一天或仿真结束 # if not end_event.triggered: # yield env.timeout(1) # # # 计算最终的模式分担率 # total_utilized = sum(sum(performance['utilization'][vt]) for vt in ['bike', 'ebike', 'moped']) # if total_utilized == 0: # total_utilized = 1 # # for vt in ['bike', 'ebike', 'moped']: # share = sum(performance['utilization'][vt]) / total_utilized # performance['mode_share'][vt].append(share) # # return performance def system_simulation(self, env, vehicles, scenario, performance): """系统仿真模型,模拟用户使用共享车辆的过程""" # 模拟城市区域 city_area = (10, 10) # 定义一天中的时间段及其权重 time_periods = { 'morning_peak': (6, 10, 1.2), # 早高峰:6-10点,权重1.2 'midday': (10, 16, 0.9), # 中午:10-16点,权重0.9 'evening_peak': (16, 19, 1.3), # 晚高峰:16-19点,权重1.3 'night': (19, 24, 1.0), # 夜间:19-24点,权重1.0 'early_morning': (0, 6, 0.7) # 凌晨:0-6点,权重0.7 } # 初始化性能数据结构中的时间段选择概率键 for period in time_periods: if f'period_{period}_choice_prob' not in performance: performance[f'period_{period}_choice_prob'] = { 'bike': [], 'ebike': [], 'moped': [] } # 初始化预测与实际选择差异键 if 'pred_actual_diff' not in performance: performance['pred_actual_diff'] = { 'bike': [], 'ebike': [], 'moped': [] } # 记录每日数据 daily_utilized = {'bike': 0, 'ebike': 0, 'moped': 0} daily_total = 0 daily_choice_probs = {'bike': [], 'ebike': [], 'moped': []} # 按时间段和用户类型的选择概率 period_choice_probs = {period: {'bike': [], 'ebike': [], 'moped': []} for period in time_periods} user_type_choice_probs = {age_group: {'bike': [], 'ebike': [], 'moped': []} for age_group in self.user_profiles['age_group'].unique()} # 记录实际选择结果与预测概率的对比 actual_choices = {'bike': 0, 'ebike': 0, 'moped': 0} predicted_choices = {'bike': 0, 'ebike': 0, 'moped': 0} # 创建一个结束事件 end_event = env.event() # 安排一个进程在仿真结束时触发事件 env.process(self._trigger_end_event(env, end_event, self.config['simulation_days'])) # 存储所有用户请求进程的引用 user_processes = [] # 主仿真循环 - 每天生成新的用户请求 current_day = 0 while not end_event.triggered: # 重置每日计数器 if env.now >= current_day: if current_day > 0: # 计算并记录每日模式分担率 self._record_daily_statistics(env, daily_utilized, daily_choice_probs, performance, period_choice_probs, actual_choices, predicted_choices, time_periods) daily_utilized = {vt: 0 for vt in daily_utilized} daily_total = 0 daily_choice_probs = {'bike': [], 'ebike': [], 'moped': []} for period in time_periods: period_choice_probs[period] = {'bike': [], 'ebike': [], 'moped': []} actual_choices = {'bike': 0, 'ebike': 0, 'moped': 0} predicted_choices = {'bike': 0, 'ebike': 0, 'moped': 0} current_day += 1 # 生成当日用户请求 daily_trips, daily_unsatisfied = self._generate_daily_user_requests( env, vehicles, scenario, performance, current_day, time_periods, daily_utilized, daily_choice_probs, period_choice_probs, user_type_choice_probs, actual_choices, predicted_choices, city_area ) # 记录每日统计数据 if daily_trips > 0: performance['total_trips'] += daily_trips performance['unsatisfied_demand'] += daily_unsatisfied # 等待下一天 if not end_event.triggered: yield env.timeout(1) # 等待所有用户进程完成 for process in user_processes: if not process.triggered: yield process # 计算最终的模式分担率 self._calculate_final_mode_share(performance) return performance def _trigger_end_event(self, env, end_event, simulation_days): """触发仿真结束事件""" yield env.timeout(simulation_days) end_event.succeed() def _record_daily_statistics(self, env, daily_utilized, daily_choice_probs, performance, period_choice_probs, actual_choices, predicted_choices, time_periods): """记录每日统计数据""" total_utilized = sum(daily_utilized.values()) for vt in ['bike', 'ebike', 'moped']: if total_utilized > 0: share = daily_utilized[vt] / total_utilized else: share = 0 performance['mode_share'][vt].append(share) performance['daily_utilization'][vt].append(daily_utilized[vt]) # 记录每日选择概率 avg_choice_probs = {vt: np.mean(daily_choice_probs[vt]) if daily_choice_probs[vt] else 0 for vt in ['bike', 'ebike', 'moped']} performance['choice_probabilities'].append(avg_choice_probs) # 记录按时间段的平均选择概率 for period in time_periods: for vt in ['bike', 'ebike', 'moped']: if period_choice_probs[period][vt]: avg_prob = np.mean(period_choice_probs[period][vt]) performance[f'period_{period}_choice_prob'][vt].append(avg_prob) # 计算预测与实际选择的差异 total_predicted = sum(predicted_choices.values()) total_actual = sum(actual_choices.values()) if total_predicted > 0 and total_actual > 0: for vt in ['bike', 'ebike', 'moped']: pred_share = predicted_choices[vt] / total_predicted actual_share = actual_choices[vt] / total_actual performance['pred_actual_diff'][vt].append(actual_share - pred_share) def _generate_daily_user_requests(self, env, vehicles, scenario, performance, current_day, time_periods, daily_utilized, daily_choice_probs, period_choice_probs, user_type_choice_probs, actual_choices, predicted_choices, city_area): """生成每日用户请求并创建处理进程""" daily_trips = 0 daily_unsatisfied = 0 for _, user in self.user_profiles.iterrows(): age_group = user['age_group'] # 生成用户请求时间点(在一天内均匀分布) for _ in range(self._calculate_daily_trips(user, time_periods)): # 随机选择一天中的时间点 trip_time = np.random.uniform(0, 1) # 0-1天之间 # 确定时间段 current_time = (current_day + trip_time) % 24 current_period = self._determine_time_period(current_time, time_periods) # 安排用户请求处理进程 env.process(self._process_user_request( env, user, age_group, current_period, vehicles, scenario, performance, city_area, daily_utilized, daily_choice_probs, period_choice_probs, user_type_choice_probs, actual_choices, predicted_choices, trip_time, time_periods )) return daily_trips, daily_unsatisfied def _calculate_daily_trips(self, user, time_periods): """计算用户每日出行次数""" # 随机选择一个时间段作为主要出行时段 period_weights = [weight for _, _, weight in time_periods.values()] total_weight = sum(period_weights) normalized_weights = [w / total_weight for w in period_weights] # 随机选择一个时间段 selected_period_idx = np.random.choice(len(time_periods), p=normalized_weights) selected_period = list(time_periods.keys())[selected_period_idx] period_weight = time_periods[selected_period][2] # 根据用户类型和时间段调整每日出行频率 adjusted_frequency = max(0.1, user['trip_frequency'] / 7 * period_weight) # 使用泊松分布生成每日实际出行次数 actual_trips = np.random.poisson(adjusted_frequency) return max(actual_trips, 0) def _determine_time_period(self, current_time, time_periods): """确定当前时间所属的时间段""" for period, (start, end, _) in time_periods.items(): if start <= current_time < end: return period return 'night' # 默认夜间 def _process_user_request(self, env, user, age_group, current_period, vehicles, scenario, performance, city_area, daily_utilized, daily_choice_probs, period_choice_probs, user_type_choice_probs, actual_choices, predicted_choices, trip_time, time_periods): """处理单个用户请求""" # 等待到请求时间 yield env.timeout(trip_time) # 随机生成起点和终点 origin = (np.random.uniform(0, city_area[0]), np.random.uniform(0, city_area[1])) destination = (np.random.uniform(0, city_area[0]), np.random.uniform(0, city_area[1])) # 计算出行距离 trip_distance = np.sqrt((destination[0] - origin[0]) ** 2 + (destination[1] - origin[1]) ** 2) # 创建包含距离信息的用户数据 user_with_trip = user.copy() user_with_trip['trip_distance'] = trip_distance user_with_trip['origin'] = origin user_with_trip['destination'] = destination user_with_trip['time_period'] = current_period # 用户选择车辆(使用实时车辆数量) choice_probs = self.user_choice_model(user_with_trip, vehicles, scenario) # 记录预测的选择次数 for vt in ['bike', 'ebike', 'moped']: predicted_choices[vt] += choice_probs[vt] # 记录选择概率 for vt in ['bike', 'ebike', 'moped']: daily_choice_probs[vt].append(choice_probs[vt]) if current_period: period_choice_probs[current_period][vt].append(choice_probs[vt]) user_type_choice_probs[age_group][vt].append(choice_probs[vt]) # 实际选择车辆 vehicle_type = np.random.choice( list(choice_probs.keys()), p=list(choice_probs.values()) ) # 记录实际选择 actual_choices[vehicle_type] += 1 # 模拟车辆使用过程 if vehicles[vehicle_type] > 0: # 有可用车辆 vehicles[vehicle_type] -= 1 daily_utilized[vehicle_type] += 1 # 计算拥堵因子(使用实时车辆数量) congestion = self.calculate_congestion(vehicles, self.road_capacity) performance['congestion'].append(congestion) # 计算出行时间 trip_time = self.calculate_trip_time( origin, destination, vehicle_type, self.road_capacity, congestion ) # 更新系统性能指标 performance['wait_time'].append(0) # 有车可用,等待时间为0 performance['utilization'][vehicle_type].append(1) # 记录行驶公里数 performance['vehicle_km'][vehicle_type] += trip_distance # 车辆返回 yield env.timeout(trip_time / 60) # 转换为小时 vehicles[vehicle_type] += 1 else: # 无车可用 # 记录等待时间(假设用户等待一段时间后取消) wait_time = np.random.gamma(2, 2) # 平均4分钟 performance['wait_time'].append(wait_time) performance['utilization'][vehicle_type].append(0) yield env.timeout(wait_time / 60) # 转换为小时 def _calculate_final_mode_share(self, performance): """计算最终的模式分担率""" total_utilized = sum(sum(performance['utilization'][vt]) for vt in ['bike', 'ebike', 'moped']) if total_utilized == 0: total_utilized = 1 for vt in ['bike', 'ebike', 'moped']: share = sum(performance['utilization'][vt]) / total_utilized performance['mode_share'][vt].append(share) def cost_analysis(self, total_vehicles, usage_data, scenario='base'): """成本分析模型,计算不同车辆配置的总成本""" # 初始化问题 prob = LpProblem("Fleet_Cost_Optimization", LpMinimize) # 定义决策变量:每种车辆的数量 bike_count = LpVariable("bike_count", lowBound=0, cat='Integer') ebike_count = LpVariable("ebike_count", lowBound=0, cat='Integer') moped_count = LpVariable("moped_count", lowBound=0, cat='Integer') # 根据不同场景调整目标函数和约束条件 if scenario == 'cost_sensitive': # 在成本敏感场景下,更注重降低运营成本 weight_purchase = 0.7 weight_operation = 1.3 # 运营成本权重 # 约束条件:自行车比例至少为30% prob += bike_count >= total_vehicles * 1 # prob += ebike_count >= total_vehicles * 0.4 # prob += moped_count >= total_vehicles * 0.2 elif scenario == 'distance_sensitive': # 在距离敏感场景下,更注重车辆性能和覆盖范围 weight_purchase = 0.9 weight_operation = 1.1 # 约束条件:电动车比例至少为40%,助力车比例至少为20% prob += bike_count >= total_vehicles * 0.4 prob += ebike_count >= total_vehicles * 0.4 prob += moped_count >= total_vehicles * 0.2 elif scenario == 'mixed_cost_performance': # 综合考虑成本和性能的场景 weight_purchase = 0.8 weight_operation = 1.2 # 约束条件:电动车比例至少为30% prob += bike_count >= total_vehicles * 0.6 prob += ebike_count >= total_vehicles * 0.3 prob += moped_count >= total_vehicles * 0.1 else: # base scenario # 基础场景 weight_purchase = 1.0 weight_operation = 1.0 # 基础场景下的默认配置 prob += bike_count >= total_vehicles * 0.7 prob += ebike_count >= total_vehicles * 0.2 prob += moped_count >= total_vehicles * 0.1 # 目标函数:最小化总成本(考虑购置成本和运营成本) total_cost = ( # 购置成本(年化) bike_count * self.vehicle_costs['bike']['purchase'] / (self.vehicle_costs['bike']['lifespan'] * 365) * weight_purchase + ebike_count * self.vehicle_costs['ebike']['purchase'] / (self.vehicle_costs['ebike']['lifespan'] * 365) * weight_purchase + moped_count * self.vehicle_costs['moped']['purchase'] / (self.vehicle_costs['moped']['lifespan'] * 365) * weight_purchase + # 日常维护成本 bike_count * self.vehicle_costs['bike']['maintenance'] * weight_operation + ebike_count * self.vehicle_costs['ebike']['maintenance'] * weight_operation + moped_count * self.vehicle_costs['moped']['maintenance'] * weight_operation + # 能源/燃料成本 ebike_count * usage_data['ebike'] * self.vehicle_costs['ebike']['energy_cost'] * weight_operation + moped_count * usage_data['moped'] * self.vehicle_costs['moped']['energy_cost'] * weight_operation + # 电动车电池更换成本 ebike_count * (usage_data['ebike'] / self.vehicle_costs['ebike']['battery_life']) * self.vehicle_costs['ebike']['battery_replacement'] * weight_operation ) prob += total_cost # 总车辆数约束 prob += bike_count + ebike_count + moped_count <= total_vehicles # 求解问题 prob.solve() return { 'bike_count': bike_count.value(), 'ebike_count': ebike_count.value(), 'moped_count': moped_count.value(), 'total_cost': prob.objective.value(), 'cost_per_trip': prob.objective.value() / max(usage_data['total_trips'], 1) # 确保不为零 } def visualize_results(self, scenario_results, scenario_name): """可视化仿真结果""" # 创建一个画布 fig, axes = plt.subplots(2, 2, figsize=(14, 10)) # 1. 绘制模式分担率 ax1 = axes[0, 0] for mode, shares in scenario_results['mode_share'].items(): ax1.plot(shares, label=mode) ax1.set_title(f'Trend of pattern sharing rate change ({scenario_name})') # ax1.set_title(f'每日模式分担率 ({scenario_name})') ax1.set_xlabel('day') ax1.set_ylabel('proportion') ax1.legend() ax1.grid(True) # 2. 绘制用户选择概率 ax2 = axes[0, 1] if scenario_results['choice_probabilities']: days = list(range(len(scenario_results['choice_probabilities']))) bike_probs = [day['bike'] for day in scenario_results['choice_probabilities']] ebike_probs = [day['ebike'] for day in scenario_results['choice_probabilities']] moped_probs = [day['moped'] for day in scenario_results['choice_probabilities']] ax2.plot(days, bike_probs, label='bike') ax2.plot(days, ebike_probs, label='ebike') ax2.plot(days, moped_probs, label='moped') ax2.set_title(f'User selection probability change trend ({scenario_name})') ax2.set_xlabel('day') ax2.set_ylabel('Selection Probability') ax2.legend() ax2.grid(True) else: ax2.set_title(f'User selection probability change trend ({scenario_name}) - noDATA') ax2.grid(True) # 3. 绘制平均出行成本 ax3 = axes[1, 0] avg_costs = {} for mode in scenario_results['trip_cost']: if scenario_results['trip_cost'][mode]: avg_costs[mode] = np.mean(scenario_results['trip_cost'][mode]) if avg_costs: ax3.bar(avg_costs.keys(), avg_costs.values()) ax3.set_title(f'Average travel cost ({scenario_name})') for i, v in enumerate(avg_costs.values()): ax3.text(i, v + 0.1, f'{v:.2f}RMB', ha='center') else: ax3.set_title(f'Average travel cost ({scenario_name}) - NOdata') ax3.set_xlabel('vehicle type') ax3.set_ylabel('cost /RMB') ax3.grid(True, axis='y') # 4. 绘制系统性能指标 ax4 = axes[1, 1] zhibiao = ['TNOT', 'NOUN', 'AWT', 'ACF'] # zhibiao = ['Total number of trips', 'Number of unmet needs', 'Average waiting time (minutes)', 'Average congestion factor'] # 指标 = ['总出行次数', '未满足需求次数', '平均等待时间(分钟)', '平均拥堵因子'] values = [ scenario_results['total_trips'], scenario_results['unsatisfied_demand'], np.mean(scenario_results['wait_time']) if scenario_results['wait_time'] else 0, np.mean(scenario_results['congestion']) if scenario_results['congestion'] else 0 ] ax4.bar(zhibiao, values) ax4.set_title(f'System performance indicators ({scenario_name})') for i, v in enumerate(values): ax4.text(i, v + max(values) * 0.02, f'{v:.2f}', ha='center') ax4.set_ylabel('value') ax4.grid(True, axis='y') plt.tight_layout() plt.savefig(f'simulation_results_{scenario_name}.png', dpi=300) plt.close() # 关闭图形,避免内存泄漏 def compare_scenarios(self, results): """比较不同场景的结果""" # 创建一个画布 fig, axes = plt.subplots(2, 2, figsize=(14, 10)) # 1. 比较总成本 ax1 = axes[0, 0] scenarios = list(results.keys()) total_costs = [results[scenario]['cost']['total_cost'] for scenario in scenarios] ax1.bar(scenarios, total_costs) ax1.set_title('不同场景总成本比较') for i, v in enumerate(total_costs): ax1.text(i, v + 10, f'{v:.2f}元', ha='center') ax1.set_xlabel('场景') ax1.set_ylabel('总成本 (元)') ax1.grid(True, axis='y') # 2. 比较车辆配置 ax2 = axes[0, 1] bike_counts = [results[scenario]['cost']['bike_count'] for scenario in scenarios] ebike_counts = [results[scenario]['cost']['ebike_count'] for scenario in scenarios] moped_counts = [results[scenario]['cost']['moped_count'] for scenario in scenarios] x = np.arange(len(scenarios)) width = 0.25 ax2.bar(x - width, bike_counts, width, label='自行车') ax2.bar(x, ebike_counts, width, label='电动车') ax2.bar(x + width, moped_counts, width, label='助力车') ax2.set_title('不同场景车辆配置比较') ax2.set_xlabel('场景') ax2.set_ylabel('车辆数量') ax2.set_xticks(x) ax2.set_xticklabels(scenarios) ax2.legend() ax2.grid(True, axis='y') # 3. 比较未满足需求比例 ax3 = axes[1, 0] unsatisfied_ratios = [ results[scenario]['performance']['unsatisfied_demand'] / max(results[scenario]['performance']['total_trips'], 1) * 100 for scenario in scenarios ] ax3.bar(scenarios, unsatisfied_ratios) ax3.set_title('不同场景未满足需求比例比较') for i, v in enumerate(unsatisfied_ratios): ax3.text(i, v + 0.1, f'{v:.2f}%', ha='center') ax3.set_xlabel('场景') ax3.set_ylabel('未满足需求比例 (%)') ax3.grid(True, axis='y') # 4. 比较平均出行成本 ax4 = axes[1, 1] avg_costs = [] for scenario in scenarios: total_cost = 0 total_trips = 0 for mode in results[scenario]['performance']['trip_cost']: if results[scenario]['performance']['trip_cost'][mode]: total_cost += sum(results[scenario]['performance']['trip_cost'][mode]) total_trips += len(results[scenario]['performance']['trip_cost'][mode]) if total_trips > 0: avg_costs.append(total_cost / total_trips) else: avg_costs.append(0) ax4.bar(scenarios, avg_costs) ax4.set_title('不同场景平均出行成本比较') for i, v in enumerate(avg_costs): ax4.text(i, v + 0.05, f'{v:.2f}元', ha='center') ax4.set_xlabel('场景') ax4.set_ylabel('平均出行成本 (元)') ax4.grid(True, axis='y') plt.tight_layout() plt.savefig('scenario_comparison.png', dpi=300) plt.close() def evaluate_scenarios(self): """评估不同场景""" self.prepare_data() all_results = {} for scenario in self.config['scenarios']: print(f"\n正在运行场景: {scenario}") results = self.run_simulation(scenario) # 成本分析(使用仿真得到的实际行驶数据) usage_data = { 'ebike': results['vehicle_km']['ebike'] / max(results['total_trips'], 1), # 每单平均行驶公里数 'moped': results['vehicle_km']['moped'] / max(results['total_trips'], 1), 'total_trips': max(results['total_trips'], 1) # 确保不为零 } cost_results = self.cost_analysis(self.config['total_vehicles'], usage_data, scenario) # 整合结果 scenario_results = { 'performance': results, 'cost': cost_results } all_results[scenario] = scenario_results # exit() # 可视化该场景的结果 self.visualize_results(results, scenario) # 比较不同场景的结果 self.compare_scenarios(all_results) return all_results def main(): """主函数,运行评估系统""" # 创建评估系统实例 config = { 'total_vehicles': 1000, 'simulation_days': 30, 'scenarios': ['base', 'cost_sensitive', 'distance_sensitive', 'mixed_cost_performance'] } evaluator = SharedVehicleEvaluationSystem(config) # 准备数据 user_profiles, vehicle_costs, road_capacity = evaluator.prepare_data() print("用户群体参数:") print(user_profiles) print("\n车辆成本参数:") for vehicle_type, params in vehicle_costs.items(): print(f"{vehicle_type}: {params}") # 运行场景评估 scenario_results = evaluator.evaluate_scenarios() # 比较不同场景的结果 print("\n场景比较结果:") for scenario, results in scenario_results.items(): print(f"\n场景: {scenario}") print(f"总成本: {results['cost']['total_cost']:.2f}元") print(f"每单成本: {results['cost']['cost_per_trip']:.2f}元") print(f"车辆配置: 自行车={results['cost']['bike_count']:.0f}, 电动车={results['cost']['ebike_count']:.0f}, 助力车={results['cost']['moped_count']:.0f}") print(f"总出行次数: {results['performance']['total_trips']}") print(f"未满足需求比例: {results['performance']['unsatisfied_demand'] / max(results['performance']['total_trips'], 1) * 100:.2f}%") print(f"平均等待时间: {np.mean(results['performance']['wait_time']):.2f}分钟" if results['performance']['wait_time'] else "平均等待时间: 无数据") # print(f"模式分担率: 自行车={results['performance']['mode_share']['bike'][-1]:.2%}, 电动车={results['performance']['mode_share']['ebike'][-1]:.2%}, 助力车={results['performance']['mode_share']['moped'][-1]:.2%}") # 打印用户选择概率 if results['performance']['choice_probabilities']: final_choice_probs = results['performance']['choice_probabilities'][-1] print(f"用户选择概率: 自行车={final_choice_probs['bike']:.2%}, 电动车={final_choice_probs['ebike']:.2%}, 助力车={final_choice_probs['moped']:.2%}") # 打印平均出行成本 avg_costs = {} for mode in results['performance']['trip_cost']: if results['performance']['trip_cost'][mode]: avg_costs[mode] = np.mean(results['performance']['trip_cost'][mode]) if avg_costs: print("平均出行成本:") for mode, cost in avg_costs.items(): print(f" {mode}: {cost:.2f}元") # 分析不同场景下的系统性能变化 print("\n系统性能变化分析:") # 基础场景作为参考 base_scenario = 'base' if base_scenario in scenario_results: base_results = scenario_results[base_scenario] for scenario, results in scenario_results.items(): if scenario == base_scenario: continue print(f"\n与基础场景相比 - {scenario}:") # 成本变化 cost_diff = results['cost']['total_cost'] - base_results['cost']['total_cost'] cost_percent_diff = cost_diff / base_results['cost']['total_cost'] * 100 print(f"总成本变化: {cost_diff:.2f}元 ({cost_percent_diff:.2f}%)") # 车辆配置变化 for vehicle_type in ['bike', 'ebike', 'moped']: count_diff = results['cost'][f'{vehicle_type}_count'] - base_results['cost'][f'{vehicle_type}_count'] percent_diff = count_diff / base_results['cost'][f'{vehicle_type}_count'] * 100 if base_results['cost'][f'{vehicle_type}_count'] > 0 else 0 print(f"{vehicle_type}配置变化: {count_diff:.0f}辆 ({percent_diff:.2f}%)") # 未满足需求变化 demand_diff = (results['performance']['unsatisfied_demand'] / max(results['performance']['total_trips'], 1) - base_results['performance']['unsatisfied_demand'] / max(base_results['performance']['total_trips'], 1)) * 100 print(f"未满足需求比例变化: {demand_diff:.2f}%") # 平均等待时间变化 if results['performance']['wait_time'] and base_results['performance']['wait_time']: wait_time_diff = np.mean(results['performance']['wait_time']) - np.mean(base_results['performance']['wait_time']) print(f"平均等待时间变化: {wait_time_diff:.2f}分钟") # 模式分担率变化 for vehicle_type in ['bike', 'ebike', 'moped']: # print(results['performance']['mode_share'][vehicle_type]) share_diff = (results['performance']['mode_share'][vehicle_type][-1] - base_results['performance']['mode_share'][vehicle_type][-1]) * 100 print(f"{vehicle_type}模式分担率变化: {share_diff:.2f}%") # 用户选择概率变化 if results['performance']['choice_probabilities'] and base_results['performance']['choice_probabilities']: for vehicle_type in ['bike', 'ebike', 'moped']: prob_diff = (results['performance']['choice_probabilities'][-1][vehicle_type] - base_results['performance']['choice_probabilities'][-1][vehicle_type]) * 100 print(f"{vehicle_type}选择概率变化: {prob_diff:.2f}%") if __name__ == "__main__": main() 帮我画一下这个代码的结构图或流程图
06-29
【最优潮流】直流最优潮流(OPF)课设(Matlab代码实现)内容概要:本文档主要围绕“直流最优潮流(OPF)课设”的Matlab代码实现展开,属于电力系统优化领域的教学与科研实践内容。文档介绍了通过Matlab进行电力系统最优潮流计算的基本原理与编程实现方法,重点聚焦于直流最优潮流模型的构建与求解过程,适用于课程设计或科研入门实践。文中提及使用YALMIP等优化工具包进行建模,并提供了相关资源下载链接,便于读者复现与学习。此外,文档还列举了大量与电力系统、智能优化算法、机器学习、路径规划等相关的Matlab仿真案例,体现出其服务于科研仿真辅导的综合性平台性质。; 适合人群:电气工程、自动化、电力系统及相关专业的本科生、研究生,以及从事电力系统优化、智能算法应用研究的科研人员。; 使用场景及目标:①掌握直流最优潮流的基本原理与Matlab实现方法;②完成课程设计或科研项目中的电力系统优化任务;③借助提供的丰富案例资源,拓展在智能优化、状态估计、微电网调度等方向的研究思路与技术手段。; 阅读建议:建议读者结合文档中提供的网盘资源,下载完整代码与工具包,边学习理论边动手实践。重点关注YALMIP工具的使用方法,并通过复现文中提到的多个案例,加深对电力系统优化问题建模与求解的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值