第1关:神经网络基本概念
1、C
第2关:激活函数
def relu(x):
'''
x:负无穷到正无穷的实数
'''
if x <= 0:
return 0
else:
return x
第3关:反向传播算法
import os
import pandas as pd
from sklearn.neural_network import MLPClassifier
if os.path.exists('./step2/result.csv'):
os.remove('./step2/result.csv')
train_data = pd.read_csv('./step2/train_data.csv')
train_label = pd.read_csv('./step2/train_label.csv')
train_label = train_label['target']
test_data = pd.read_csv('./step2/test_data.csv')
mlp = MLPClassifier(solver='lbfgs',max_iter =500,
alpha=1e-3,hidden_layer_sizes=(100,),learning_rate_init=0.0001)
mlp.fit(train_data, train_label)
result = mlp.predict(test_data)
save_df = pd.DataFrame({'result':result})
save_df.to_csv('./step2/result.csv',index=0)
第4关:使用pytorch搭建卷积神经网络识别手写数字
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as Data
import torchvision
import os
if os.path.exists('./step3/cnn.pkl'):
os.remove('./step3/cnn.pkl')
train_data = torchvision.datasets.MNIST(
root='./step3/mnist/',
train=True,
transform=torchvision.transforms.ToTensor(),
download=False,
)
train_data_tiny = []
for i in range(6000):
train_data_tiny.append(train_data[i])
train_data = train_data_tiny
train_loader = Data.DataLoader(
dataset=train_data,
batch_size=64,
num_workers=2,
shuffle=True
)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels=1,
out_channels=16,
kernel_size=5,
stride=1,
padding=2,
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.out = nn.Linear(32 * 7 * 7, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
output = self.out(x)
return output
cnn = CNN()
optimizer = torch.optim.SGD(cnn.parameters(), lr=0.01, momentum=0.9)
loss_func = nn.CrossEntropyLoss()
EPOCH = 3
for e in range(EPOCH):
for x, y in train_loader:
batch_x = Variable(x)
batch_y = Variable(y)
outputs = cnn(batch_x)
loss = loss_func(outputs, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.save(cnn.state_dict(), './step3/cnn.pkl')