1、基于矩阵分解(MF,Matrix Factorization)的推荐算法
# coding:utf-8
__author__ = "orisun"
import random
import math
class LFM(object):
def __init__(self, rating_data, F, alpha=0.1, lmbd=0.1, max_iter=500):
'''rating_data是list<(user,list<(position,rate)>)>类型
'''
self.F = F
self.P = dict() # R=PQ^T,代码中的Q相当于博客中Q的转置
self.Q = dict()
self.alpha = alpha
self.lmbd = lmbd
self.max_iter = max_iter
self.rating_data = rating_data
'''随机初始化矩阵P和Q'''
for user, rates in self.rating_data:
self.P[user] = [random.random() / math.sqrt(self.F)
for x in range(self.F)]
print(self.P[user])
for item, _ in rates:
if item not in self.Q:
self.Q[item] = [random.random() / math.sqrt(self.F)
for x in range(self.F)]#创建一个range行的随机数
def train(self):
'''随机梯度下降法训练参数P和Q
'''
for step in range(self.max_iter):
for user, rates in self.rating_data:
for item, rui in rates:
hat_rui = self.predict(user, item)
err_ui = rui - hat_rui
for f in range(self.F):
self.P[user][f] += self.alpha * (err_ui * self.Q[item][f] - self.lmbd * self.P[user][f])
self.Q[item][f] += self.alpha * (err_ui * self.P[user][f] - self.lmbd * self.Q[item][f])
self.alpha *= 0.9 # 每次迭代步长要逐步缩小
def predict(self, user, item):
'''预测用户user对物品item的评分
'''
return sum(self.P[user][f] * self.Q[item][f] for f in range(self.F))
if __name__ == '__main__':
'''用户有A B C,物品有a b c d'''
rating_data = list()
rate_A = [('a', 1.0), ('b', 1.0)]
rating_data.append(('A', rate_A))
rate_B = [('b', 1.0), ('c', 1.0)]
rating_data.append(('B', rate_B))
rate_C = [('c', 1.0), ('d', 1.0)]
rating_data.append(('C', rate_C))
#print(rating_data)
lfm = LFM(rating_data, 2)
lfm.train()
for item in ['a', 'b', 'c', 'd']:
print(item, lfm.predict('A', item)) # 计算用户A对各个物品的喜好程度