Description
问区间[1,n][1,n]中不能被a1,...,aka1,...,ak整除的数字个数
Input
第一行两个整数n,kn,k,之后输入kk个整数(1≤n≤1013,1≤k≤100,1≤ai≤1000)(1≤n≤1013,1≤k≤100,1≤ai≤1000)
Output
输出满足条件的数字个数
Sample Input
20 3
2 3 5
Sample Output
6
Solution
dp[i][j]dp[i][j]表示前jj个数字中不能被整除的数字个数,那么该值即为前jj个数字中不能被整除的数字个数减去前jj个数字中可以被整除但是不能被aj+1,...,anaj+1,...,an整除的数字个数,进而有以下转移
dp[i][j]=dp[i+1][j]−dp[i+1][⌊jai⌋]dp[i][j]=dp[i+1][j]−dp[i+1][⌊jai⌋]
jj比较小时存下来,较大值递归求解,注意为使第二维下降更快,将序列排序使得a1>a2>...>ana1>a2>...>an
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=105;
ll n;
int k,a[maxn],M=200000,dp[maxn][200001];
ll Solve(int m,ll n)
{
if(m>k||n==0)return n;
if(n<=M&&dp[m][n]!=-1)return dp[m][n];
ll ans=Solve(m+1,n)-Solve(m+1,n/a[m]);
if(n<=M)dp[m][n]=ans;
return ans;
}
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
scanf("%I64d%d",&n,&k);
for(int i=1;i<=k;i++)scanf("%d",&a[i]);
sort(a+1,a+k+1,cmp);
memset(dp,-1,sizeof(dp));
printf("%I64d\n",Solve(1,n));
return 0;
}