Description
给出两个字符串a和b,每次只能从一个串a中截取一个子串,问欲用这些子串构成b串最少需要多少个a串(子串可反向)
Input
两个字符串a和b,串长均不超过2100
Output
输出最少需要的a串数量以及每次截取a的哪一个子串,输出这个子串的起始位置和终止位置,如果这个子串在b中是反向的则反向输出;如果用a串的子串不能构造出b串则输出-1
Sample Input
aaabrytaaa
ayrat
Sample Output
3
1 1
6 5
8 7
Solution
贪心,每次取a串和剩余未匹配的b串长度最大的去匹配,注意每次匹配要往前往后各一次
Code
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 2222
char c[maxn],s[maxn];
int ans[maxn][2],res;
int main()
{
while(~scanf("%s%s",c,s))
{
int len1=strlen(c),len2=strlen(s),cnt=0,flag,l,r,len;
res=0;
for(int i=0;i<len2;i++)
{
flag=0,len=0;
for(int j=0;j<len1;j++)
if(c[j]==s[i])
{
flag=1;
l=r=j;
for(int k=1;j+k<len1&&i+k<len2;k++)
if(c[j+k]==s[i+k])r++;
else break;
if(len<r-l+1)len=r-l,ans[res][0]=l,ans[res][1]=r;
l=r=j;
for(int k=-1;j+k>=0&&i-k<len2;k--)
if(c[j+k]==s[i-k])l--;
else break;
if(len<r-l+1)len=r-l,ans[res][0]=r,ans[res][1]=l;
}
if(!flag)break;
res++,i+=len;
}
if(!flag)printf("-1\n");
else
{
printf("%d\n",res);
for(int i=0;i<res;i++)printf("%d %d\n",ans[i][0]+1,ans[i][1]+1);
}
}
return 0;
}