509. 斐波那契数
- 确定 dp[i] 含义。dp[i]:第 i 个斐波那契数值为 dp[i]
- 递推公式。
dp[i] = dp[i - 1] + dp[i - 2] - dp 数组如何初始化。
dp[0] = 1, dp[1] = 1 - 遍历顺序。从前向后
- 打印 dp 数组
dp 数组:
class Solution {
public int fib(int n) {
// 0 <= n <= 30
int[] dp = new int[31];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i < 31; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
压缩:
class Solution {
public int fib(int n) {
// 0 <= n <= 30
// 0, 1, 1, 2, 3
// 0, 1, 2, 3, 4
if (n < 2) {
return n;
}
int p = 0;
int q = 1;
int sum = 0;
for (int i = 2; i <= n; i++) {
sum = p + q;
p = q;
q = sum;
}
return sum;
}
}
70. 爬楼梯
- 确定 dp[i] 含义。dp[i]:达到 i 阶有 dp[i] 种方法
- 递推公式。
dp[i] = dp[i - 1] + dp[i - 2] - dp 数组如何初始化。
dp[1] = 1, dp[2] = 2 - 遍历顺序。从前向后
- 打印 dp 数组
dp 数组:
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n + 1];
if (n == 1) {
return n;
}
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i < n + 1; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
压缩:
class Solution {
public int climbStairs(int n) {
int p = 0, q = 1, sum = 1;
for (int i = 2; i <= n; i++) {
p = q;
q = sum;
sum = p + q;
}
return sum;
}
}
746. 使用最小花费爬楼梯
- 确定 dp[i] 含义。dp[i]:达到 i 位置最小花费为 dp[i]
- 递推公式。
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2] - dp 数组如何初始化。
dp[0] = 0, dp[1] = 0 - 遍历顺序。从前向后
- 打印 dp 数组
dp 数组:
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i <= n; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[n];
}
}
压缩:
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int p = 0, q = 0, sum = 0;
for (int i = 2; i <= n; i++) {
sum = Math.min(q + cost[i - 1], p + cost[i - 2]);
p = q;
q = sum;
}
return sum;
}
}
动态规划总结
动规五部曲:
- dp 数组以及下标的含义
- 递推公式
- dp 数组如何初始化
- 遍历顺序
- 打印 dp 数组(出错时使用)
写代码的顺序与上相反:
先是确定 dp 数组及下标的含义,然后初始化数组,然后开始遍历,然后运用递推公式。
状态压缩的通用模板:
class Solution {
public int xxx(int n) {
int p = 0, q = 1, sum = 1;
for (int i = k; i <= n; i++) { // k 为实际的第几个数。如 k = 2 表示计算第 2 个数的值
p = q;
q = sum;
sum = p + q;
}
return sum;
}
}
或
class Solution {
public int xxx(int n) {
int p = 0, q = 1, sum = 1;
for (int i = k; i <= n; i++) { // k 为实际的第几个数。如 k = 2 表示计算第 2 个数的值
sum = p + q;
p = q;
q = sum;
}
return sum;
}
}
本质是滚动数组:


被折叠的 条评论
为什么被折叠?



