python实现K近邻回归,采用等权重和不等权重

本文通过使用sklearn库中的波士顿房价数据集,进行了数据预处理并采用标准化方法,之后利用K近邻回归算法进行房价预测。实验比较了均匀权重和距离权重下模型的表现,并评估了模型的决定系数(R-squared)、均方误差(MSE)及平均绝对误差(MAE)。
from sklearn.datasets import load_boston

boston = load_boston()

from sklearn.cross_validation import train_test_split

import numpy as np;

X = boston.data
y = boston.target

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)

print 'The max target value is: ', np.max(boston.target)
print 'The min target value is: ', np.min(boston.target)
print 'The average terget value is: ', np.mean(boston.target)

from sklearn.preprocessing import StandardScaler

ss_X = StandardScaler()
ss_y = StandardScaler()

X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)

from sklearn.neighbors import KNeighborsRegressor

uni_knr = KNeighborsRegressor(weights = 'uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)

dis_knr = KNeighborsRegressor(weights = 'distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)

from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

print 'R-squared value of uniform weights KNeighorRegressor is: ', uni_knr.score(X_test, y_test)
print 'The mean squared error of uniform weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
print 'The mean absolute error of uniform weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))

print 'R-squared of distance weights KNeighorRegressor is: ', dis_knr.score(X_test, y_test)
print 'the value of mean squared error of distance weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
print 'the value of mean ssbsolute error of distance weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值