tf.Variable(initializer, name):initializer是初始化参数,可以有tf.random_normal,tf.constant,tf.constant等,name就是变量的名字,用法如下:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
a1 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a1')
a2 = tf.Variable(tf.constant(1), name='a2')
a3 = tf.Variable(tf.ones(shape=[2,3]), name='a3')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(a1)
print sess.run(a2)
print sess.run(a3)输出:
[[ 0.76599932 0.99722123 -0.89361787]
[ 0.19991693 -0.16539733 2.16605783]]
1
[[ 1. 1. 1.]
[ 1. 1. 1.]]
本文介绍如何使用TensorFlow创建和初始化不同类型的变量。通过实例演示了使用tf.random_normal、tf.constant和tf.ones等方法来初始化变量的过程,并展示了如何在会话中运行这些变量。
8072





