如题:http://poj.org/problem?id=1459
Time Limit: 2000MS | Memory Limit: 32768K | |
Total Submissions: 24182 | Accepted: 12609 |
Description

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
Input
Output
Sample Input
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7 (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5 (0)5 (1)2 (3)2 (4)1 (5)4
Sample Output
15 6
Hint
Source
题目大意:输入n,np,nc,m,其中n是总结点数,np是power station的数量,nc是customer的数量,m代表m条有向边,然后的np组数据,代表power station的编号和最大允许通过的流量。接下来的nc组数据,代表customer的编号和通过这个节点会消耗掉的流量,要求求出整个图中会消耗掉的流量的最大值。
思路:根据节点的特点,power station有一个允许通过的最大流量w。因此设源点n向每个power station节点连一条w的边。customer节点会消耗掉一部分流量c,设立汇点n+1,
每一个customer节点向汇点连一条容量为c的边。最大流的结果就是流在这个网络中流通的最大消耗量。
这一题Ford_Fullerson算法超时,Dinic算法可以过。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
#define MAXN 110
#define Min(a,b)(a<b?a:b)
#define INF 0x0fffffff
int n,np,nc,m;
struct edge
{
int to,cap,rev;
edge(){}
edge(int a,int b,int c):to(a),cap(b),rev(c){}
};
vector<edge>G[MAXN];
int level[MAXN];
int iter[MAXN];
void bfs(int s)
{
memset(level,-1,sizeof(level));
queue<int>que;
que.push(s);
level[s]=0;
while(!que.empty())
{
int v=que.front();
que.pop();
int i;
for(i=0;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap>0&&level[e.to]<0)
{
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f)
{
if(v==t)
return f;
for(int i=0;i<G[v].size();i++)
{
edge &e=G[v][i];
if(e.cap>0&&level[v]<level[e.to])
{
int d=dfs(e.to,t,Min(f,e.cap));
if(d>0)
{
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(1)
{
bfs(s);
if(level[t]<0)
return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0)
flow+=f;
}
}
void addEdge(int u,int v,int w)
{
G[u].push_back(edge(v,w,G[v].size()));
G[v].push_back(edge(u,0,G[u].size()-1));
}
int main()
{
// freopen("C:\\1.txt","r",stdin);
while(~scanf("%d%d%d%d",&n,&np,&nc,&m))
{
int st=n;
int ed=n+1;
char s[30];
int i;
for(i=0;i<MAXN;i++)
G[i].clear();
for(i=0;i<m;i++)
{
int u,v,w;
scanf("%s",s);
sscanf(s,"(%d,%d)%d",&u,&v,&w);
addEdge(u,v,w);
}
for(i=0;i<np;i++)
{
int v,w;
scanf("%s",s);
sscanf(s,"(%d)%d",&v,&w);
addEdge(st,v,w);
}
for(i=0;i<nc;i++)
{
int u,w;
scanf("%s",s);
sscanf(s,"(%d)%d",&u,&w);
addEdge(u,ed,w);
}
// for(i=0;i<=n+1;i++)
// for(int j=0;j<G[i].size();j++)
// printf("(%d,%d)%d\n",i,G[i][j].to,G[i][j].cap);
printf("%d\n",max_flow(st,ed));
}
return 0;
}