LCIS详解

dp[i][j]表示a[1]~a[i]和b[1]~b[j]并以b[j]结尾的最长公共上升子序列,如果a[i]不等于b[j]时,很明显dp[i][j]的值就等于dp[i-1][j];如果a[i]等于b[j]时,就在b[1]~b[j]中寻找b[k]使得b[j]>b[k]而且dp[i][k]是最大的。即状态转移方程为:dp[i][j] = dp[i-1][j](a[i] != b[j]),dp[i][j] = max(dp[i][k])+1(1<=k<j && b[j]>b[k]).


例题:UVA12511

代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
int a[1111],b[1111];
int dp[1111][1111];//dp[i][j]表示a[1]~a[i]和b[1]~b[j]并以b[j]结尾的LCIS
int main()
{
#ifdef CDZSC_June
	freopen("t.txt","r",stdin);
#endif //CDZSC_June
	int t,n,m;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i = 1;i<=n; i++)
		{
			scanf("%d",&a[i]);
			dp[i][0] = 0;
		}
		scanf("%d",&m);
		for(int i = 1;i<=m; i++)
		{
			scanf("%d",&b[i]);
			dp[0][i] = 0;
		}
		int max1;
		dp[0][0] = 0;
		for(int i = 1; i<=n; i++)
		{
			max1 = 0;//用来记录小于a[i]的b[j]中最大的dp[i][j]
			for(int j = 1; j<=m;j++)
			{
				if(a[i] != b[j])
				{
					dp[i][j] = dp[i-1][j];
				}
				else
				{
					for(int k = 1; k<j; k++)//即当a[i] == b[j]时.就寻找前面比b[j]小而且最大的dp[i][k](1=<k<j)即max1的值再加上1
					{
						if(b[j] > b[k]){
							max1 = max(max1,dp[i][k]);
						}
					}
					dp[i][j] = max1 + 1;
				}
			}
		}
		int ans = 0;
		for(int i = 1;i<=m;i++)
		{
			ans = max(ans,dp[n][i]);
		}
		printf("%d\n",ans);
	}
	return 0;
}
以上程序的复杂度为O(n^3),n太大的话就会超时。所以应该优化一下,当a[i] == b[j]时,才去遍历寻找max1,是在b[j]>b[k]的条件下,即在a[i]>b[k]所以可以先在[1,m]里面保存好max1的值,然后当a[i] == b[j]时,就可以直接令dp[i][j]=max1+1,时间复杂度就降为O(n^2);

代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
int a[1111],b[1111];
int dp[1111][1111];//dp[i][j]表示a[1]~a[i]和b[1]~b[j]并以b[j]结尾的LCIS
int main()
{
#ifdef CDZSC_June
	freopen("t.txt","r",stdin);
#endif //CDZSC_June
	int t,n,m;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i = 1;i<=n; i++)
		{
			scanf("%d",&a[i]);
			dp[i][0] = 0;
		}
		scanf("%d",&m);
		for(int i = 1;i<=m; i++)
		{
			scanf("%d",&b[i]);
			dp[0][i] = 0;
		}
		int max1;
		dp[0][0] = 0;
		for(int i = 1; i<=n; i++)
		{
			max1 = 0;//用来记录小于a[i]的b[j]中最大的dp[i][j]
			for(int j = 1; j<=m;j++)
			{
				if(a[i] != b[j])
				{
					dp[i][j] = dp[i-1][j];
				}
				else
				{
					dp[i][j] = max1 + 1;//即当a[i] == b[j]时.就寻找前面比b[j](即a[i])小而且最大的dp[i][k](1=<k<j)即max1的值再加上1(因为当前两者相等了)
				}
				if(a[i] > b[j] && max1 < dp[i][j]){
					max1 = dp[i][j];
				}
			}
		}
		int ans = 0;
		for(int i = 1;i<=m;i++)
		{
			ans = max(ans,dp[n][i]);
		}
		printf("%d\n",ans);
	}
	return 0;
}


观察状态转移方程可以进行通过滚动数组压缩空间;即状态转移方程为:dp[j] = max(dp[k])+1(1<=k<j && b[j]>b[k])

代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
int a[1111],b[1111];
int dp[1111];
int main()
{
#ifdef CDZSC_June
	freopen("t.txt","r",stdin);
#endif //CDZSC_June
	int t,n,m;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i = 1;i<=n; i++)
		{
			scanf("%d",&a[i]);
		}
		scanf("%d",&m);
		for(int i = 1;i<=m; i++)
		{
			scanf("%d",&b[i]);
			dp[i] = 0;
		}
		int max1;
		for(int i = 1; i<=n; i++)
		{
			max1 = 0;
			for(int j = 1; j<=m;j++)
			{
				if(a[i] == b[j])
				{
					dp[j] = max1 + 1;
				}
				if(a[i] > b[j] && max1 < dp[j]){
					max1 = dp[j];
				}
			}
		}
		int ans = 0;
		for(int i = 1;i<=m;i++)
		{
			ans = max(ans,dp[i]);
		}
		printf("%d\n",ans);
	}
	return 0;
}


# 精读数组/链表/树/图,手写经典算法 ## 详解 数组、链表、树、图是计算机科学中最基础且最重要的**数据结构**,它们构成了大多数算法和系统实现的基础。掌握这些结构及其相关经典算法对于深入理解编程和算法设计至关重要。 --- ## 一、数组(Array) ### 1. 定义与特点 - **连续内存**:元素在内存中连续存储。 - **随机访问**:支持通过索引快速访问 $O(1)$。 - **插入/删除效率低**:平均时间复杂度 $O(n)$。 ### 2. 经典算法 #### (1)两数之和(Two Sum) ```python def two_sum(nums, target): seen = {} for i, num in enumerate(nums): complement = target - num if complement in seen: return [seen[complement], i] seen[num] = i return [] ``` #### (2)最长连续递增序列 ```python def find_length_of_lcis(nums): max_len = count = 1 for i in range(1, len(nums)): if nums[i] > nums[i - 1]: count += 1 max_len = max(max_len, count) else: count = 1 return max_len ``` --- ## 二、链表(Linked List) ### 1. 定义与特点 - **非连续存储**:每个节点包含数据和指向下一个节点的指针。 - **插入/删除高效**:时间复杂度 $O(1)$(已知位置)。 - **访问效率低**:需从头遍历,时间复杂度 $O(n)$。 ### 2. 经典算法 #### (1)反转链表(Iterative) ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def reverse_list(head): prev = None curr = head while curr: next_temp = curr.next curr.next = prev prev = curr curr = next_temp return prev ``` #### (2)判断链表是否有环(Floyd判圈算法) ```python def has_cycle(head): slow = fast = head while fast and fast.next: slow = slow.next fast = fast.next.next if slow == fast: return True return False ``` --- ## 三、树(Tree) ### 1. 定义与特点 - **非线性结构**:每个节点有多个子节点。 - **典型应用**:二叉搜索树(BST)、堆、平衡树(AVL、红黑树)等。 ### 2. 经典算法 #### (1)前序遍历(递归) ```python def preorder_traversal(root): result = [] def dfs(node): if not node: return result.append(node.val) dfs(node.left) dfs(node.right) dfs(root) return result ``` #### (2)判断是否为二叉搜索树(BST) ```python def is_valid_bst(root): def dfs(node, low=float('-inf'), high=float('inf')): if not node: return True if not (low < node.val < high): return False return dfs(node.left, low, node.val) and dfs(node.right, node.val, high) return dfs(root) ``` --- ## 四、图(Graph) ### 1. 定义与特点 - **顶点与边的集合**:用于表示对象之间的关系。 - **常见表示方式**:邻接矩阵、邻接表。 ### 2. 经典算法 #### (1)深度优先搜索(DFS) ```python def dfs(graph, start): visited = set() def helper(node): visited.add(node) for neighbor in graph[node]: if neighbor not in visited: helper(neighbor) helper(start) return visited ``` #### (2)广度优先搜索(BFS) ```python from collections import deque def bfs(graph, start): visited = set() queue = deque([start]) while queue: node = queue.popleft() if node not in visited: visited.add(node) queue.extend(graph[node] - visited) return visited ``` #### (3)Dijkstra最短路径算法 ```python import heapq def dijkstra(graph, start): distances = {node: float('inf') for node in graph} distances[start] = 0 heap = [(0, start)] while heap: current_dist, u = heapq.heappop(heap) if current_dist > distances[u]: continue for v, weight in graph[u].items(): distance = current_dist + weight if distance < distances[v]: distances[v] = distance heapq.heappush(heap, (distance, v)) return distances ``` --- ## 知识点 1. **数组操作**:包括查找、排序、双指针技巧等,适用于线性结构处理。 2. **链表结构**:掌握节点操作、反转、判环等基础链表算法。 3. **树与图遍历**:掌握DFS、BFS、递归遍历与最短路径等核心算法。
最新发布
09-14
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值