ReLU函数
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x,该函数定义为
![]()
ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。
%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
print(torch.__version__)
def xyplot(x_vals, y_vals, name):
# d2l.set_figsize(figsize=(5, 2.5))
plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
plt.xlabel('x')
plt.ylabel(name + '(x)')
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')

y.sum().backward()
xyplot(x, x.grad, 'grad of relu')

Sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:

y = x.sigmoid()
xyplot(x, y, 'sigmoid')

依据链式法则,sigmoid函数的导数:
![]()
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')

tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
y = x.tanh()
xyplot(x, y, 'tanh')

依据链式法则,tanh函数的导数:
![]()
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')

关于激活函数的选择:
ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。
用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。
在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。
在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。

本文深入探讨了ReLU、Sigmoid和tanh等激活函数的工作原理及特性,对比了它们的导数变化,强调了ReLU函数在现代神经网络中的优势,以及在不同场景下选择合适激活函数的重要性。
2044

被折叠的 条评论
为什么被折叠?



