Tugraph Analytics图计算快速上手之紧密中心度算法

作者:张武科

概述

**紧密中心度(Closeness Centrality)**计量了一个节点到其他所有节点的紧密性,即该节点到其他节点的距离的倒数;节点对应的值越高表示紧密性越好,能够在图中传播信息的能力越强,可用以衡量信息流入或流出该节点的能力,多用与社交网络中关键节点发掘等场景。

算法介绍

对于图中一个给定节点,紧密性中心性是该节点到其他所有节点的最小距离和的倒数:
在这里插入图片描述

其中,u表示待计算紧密中心度的节点,d(u, v)表示节点u到节点v的最短路径距离;实际场景中,更多地使用归一化后的紧密中心度,即计算目标节点到其他节点的平均距离的倒数:
在这里插入图片描述

其中,n表示图中节点数。

算法实现

首先,基于AlgorithmUserFunction接口实现ClosenessCentrality,如下:

@Description(name = "closeness_centrality", description = "built-in udga for ClosenessCentrality")
public class ClosenessCentrality implements AlgorithmUserFunction<Long, Long> {
   

    private AlgorithmRuntimeContext context;
    private long sourceId;

    @Override
    public void init(AlgorithmRuntimeContext context, Object[] params) {
   
        this.context = context;
        if (params.length != 1) {
   
            throw new IllegalArgumentException("Only support one arguments, usage: func(sourceId)");
        }
        this.sourceId = ((Number) params[0]).longValue();
    }

    @Override
    public void process(RowVertex vertex, Iterator<Long> messages) {
   
        List<RowEdge> edges = context.loadEdges(EdgeDirection.OUT);
        if (context.getCurrentIterationId() == 1L) {
   
            context.sendMessage(vertex.getId(), 1L);
            context.sendMessage(sourceId, 1L);
        } else if (context.getCurrentIterationId() == 2L) {
   
            context.updateVertexValue(ObjectRow.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值