目录
- 引言
- 1、MaxKB概述
-
- 1.1 定义与目标
- 1.2 特点与优势
- 2、MaxKB原理
- 3、MaxKB架构
- 4、基于MaxKB+Ollama+Qwen2搭建本地知识库
-
- 4.1 环境准备
- 4.2 部署MaxKB
- 4.3 部署Ollama
- 4.4 部署运行qwen2
- 4.5 知识库配置
-
- 4.5.1登录 MaxKB 系统
- 4.5.2上传文档
- 4.5.3设置分段规则
- 4.6 模型配置
- 4.7 创建应用
- 结语
- 参考引用
引言
我们生活在一个信息爆炸的时代,数据的增长速度前所未有,企业每天产生的数据量呈指数级增长。这些数据中蕴含着巨大的价值,但同时也带来了前所未有的挑战:如何从海量的数据中快速提取有价值的信息,转化为企业的竞争优势?传统的数据处理方法已经无法满足现代企业的需求,企业迫切需要一种更高效、更智能的解决方案。
在这样的背景下,MaxKB应运而生。MaxKB,即Max Knowledge Base,是一款基于LLM(Large Language Model)大语言模型的知识库问答系统。它利用最新的人工智能技术,特别是自然语言处理(NLP)和机器学习,为企业提供了一种全新的信息处理和利用方式。
1、MaxKB概述
1.1 定义与目标
MaxKB,全称Max Knowledge Base,是一个开源的AI知识库问答系统。它的目标是成为企业的"最强大脑",通过集成大型语言模型,提供快速、准确的问答服务。
1.2 特点与优势
- 开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;
- 无缝嵌入:支持零编码快速嵌入到第三方业务系统;
- 多模型支持:支持对接主流的大模型,包括 Ollama 本地私有大模型(如 Meta Llama 3、qwen 等)、通义千问、OpenAI、Azure OpenAI、Kimi、智谱 AI、讯飞星火和百度千帆大模型等。
2、MaxKB原理
知识库构建
MaxKB通过构建知识库,将企业内部的文档、资料等信息进行结构化存储,便于后续的检索和分析。
问答机制
利用LLM大语言模型,MaxKB能够理解用户的查询意图,并从知识库中检索出最相关的答案。
3、MaxKB架构
技术栈
- 前端:Vue.js
- 后端:Python / Django
- 工作流引擎:LangChain
- 向量数据库:PostgreSQL / pgvector
- 大模型支持:Azure OpenAI、OpenAI、百度千帆等
系统组件:MaxKB由多个组件构成,包括文档上传、自动爬虫、文本处理、问答引擎等,共同协作完成知识库的构建和问答服务。
文档处理:支持多种格式的文档上传,自动进行文本拆分和向量化处理。
智能问答:提供智能问答交互,根据用户查询,快速从知识库中检索答案。
业务系统集成:支持与第三方业务系统的集成,无需编码即可实现智能问答功能。
4、基于MaxKB+Ollama+Qwen2搭建本地知识库
4.1 环境准备
确保系统满足MaxKB的运行条件,包括操作系统、数据库、Python环境等。
- 操作系统:Ubuntu 22.04 / CentOS 7 64 位系统;
- CPU/内存: 推荐 2C/4GB 以上;
- 磁盘空间:100GB;
- 浏览器要求:请使用 Chrome、FireFox、Safari、Edge等现代浏览器;
可访问互联网。
4.2 部署MaxKB
通过Docker快速部署MaxKB,执行以下命令即可启动服务:
docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data cr2.fit2cloud.com/1panel/maxkb
安装成功后,可通过浏览器访问 MaxKB:
http://目标服务器 IP 地址:目标端口
默认登录信息
用户名:admin 默认密码:MaxKB@123…
4.3 部署Ollama
Ollama支持多种安装方式,包括通过包管理器、Docker或从源代码编译。
对于Linux用户,可以使用如下命令进行安装:
curl -fsSL https://ollama.com/install.sh | sh
查看模型列表:
ollama list
查看版本:
查看 Ollama 版本
ollama -v
启动服务:
ollama serve
4.4 部署运行qwen2
Ollama支持很多模型,可以在https://ollama.com/library查看
使用以下命令部署运行模型:
ollama run qwen2
4.5 知识库配置
4.5.1登录 MaxKB 系统
使用浏览器打开服务地址:http://目标服务器IP地址:目标端口。
默认的登录信息:
用户名:admin 默认密码:MaxKB@123…
打开【知识库】页面,点击【创建知识库】,进入创建知识库页面。 输入知识库名称、知识库描述、选择通用型知识库类型。
然后将离线文档通过拖拽方式或选择文件上传方式进行上传。
4.5.2上传文档
上传文档要求:
1)支持文本文件格式为:Markdown、TXT、PDF、DOCX、HTML;
2)支持 QA 问答对格式为:Excel、CSV;
3)每次最多上传 50 个文件;
4)每个文件不超过 100 MB;
5)支持选择文件夹,上传文件夹下符合要求的文件。
4.5.3设置分段规则
智能分段
MarkDown 类型的文件分段规则为:根据标题逐级下钻式分段(最多支持 6 级标题),每段的字符数最大为 4096 个字符;
当最后一级的文本段落字符数超过设置的分段长度时,会查找分段长度以内的回车进行截取。
HTML、DOCX 类型的分段规则为:识别标题格式转换成 markdown 的标题样式,逐级下钻进行分段(最多支持 6 级标题)每段的字符数最大为 4096 个字符;
TXT和 PDF 类型的文件分段规则为:按照标题# 进行分段,若没有#标题的责按照字符数4096个字符进行分段,会查找分段长度以内的回车进行截取。
高级分段
用户可以根据文档规范自定义设置分段标识符、分段长度及自动清洗。
分段标识支持:#、##、###、####、#####、######、-、空行、回车、空格、分号、逗号、句号,若可选项没有还可以自定义输入分段标识符。
分段长度:支持最小 50个字符,最大 4096 个字符。
自动清洗:开启后系统会自动去掉重复多余的符号如空格、空行、制表符等。
4.6 模型配置
添加 Ollama 模型
点击【添加模型】,选择供应商【 Ollama 】,直接进入下一步填写 Ollama 供应商的大模型表单。或者左侧供应商先选择【 Ollama 】,然后点击【添加模型】,则直接进入 Ollama 表单。
模型名称: MaxKB 中自定义的模型名称。
模型类型: 大语言模型。
基础模型: 为供应商的 LLM 模型,支持自定义输入,但需要与供应商的模型名称保持一致,系统会自动下载部署模型。
API 域名和 API Key: 为供应商的连接信息(Ollama 服务地址, 如:http://42.92.198.53:11434 )。若没有 API Key 可以输入任意字符。
点击【添加】后 校验通过则添加成功,便可以在应用的 AI 模型列表选择该模型。
4.7 创建应用
点击【创建应用】,进入创建应用页面,左侧为应用信息,右侧为调试预览界面。
应用名称:用户提问时对话框的标题和名字。
应用描述:对应用场景及用途的描述。
AI模型: 在【系统设置】-【模型管理】中添加的大语言模型。
提示词:系统默认有智能知识库的提示词,用户可以自定义通过调整提示词内容,可以引导大模型聊天方向.
多轮对话: 开启时当用户提问携带用户在当前会话中最后3个问题;不开启则仅向大模型提交当前问题题。
关联知识库:用户提问后会在关联的知识库中检索分段。
开场白:用户打开对话时,系统弹出的问候语。支持 Markdown 格式;[-]后的内容为快捷问题,一行一个。
问题优化:对用户提出的问题先进行一次 LLM 优化处理,将优化后的问题在知识库中进行向量化检索;
开启后能提高检索知识库的准确度,但由于多一次询问大模型会增加回答问题的时长。
应用信息设置完成后,可以在右侧调试预览中进行提问预览,调试预览中提问内容不计入对话日志。
参数设置详细说明
1)检索模式:
向量检索:使用向量模型通过向量距离计算与用户问题最相似的文本分段;
全文检索:通过关键词检索,返回包含关键词最多的文本分段;
混合检索:同时执行全文检索和向量检索,再进行重排序,从两类查询结果中选择匹配用户问题的最佳结果。
2)相似度:相似度越高代表问题和分段的相关性越强。
3)引用分段数:提问时按相似度携带N个分段生成提示词询问 LLM 模型。
4)引用最大字符数:引用分段内容设置最大字符数,超过时则截断。
5)无引用知识库时,有 2 种处理方式可设置:
继续提问:可以自定义设置提示词,需要有{question}用户问题的占位符,才会把用户问题发送给模型。
指定回复内容:当没有命中知识库分段时可以指定回复内容。
结语
MaxKB,作为企业级知识库问答系统的佼佼者,不仅以其强大的功能和灵活的部署方式,为企业提供了一种高效、智能的信息处理方案,更在AI技术的持续进步中展现出无限的潜力。它通过深度整合自然语言处理和机器学习技术,使得企业能够轻松应对数据洪流,实现信息的快速检索、精准分析和智能决策。
展望未来,随着AI技术的进一步发展,MaxKB有望在知识管理和智能问答领域发挥更大的作用。它将继续推动企业知识资产的有效管理和利用,助力企业在激烈的市场竞争中保持领先。我们期待与更多企业携手,共同探索MaxKB的无限可能,开启智能信息处理的新篇章。
零基础入门AI大模型
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
需要的可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
这份完整版的学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】
