mmdetection训练自己的数据集

一、mmdetection下载

github:open-mmlab/mmdetection: OpenMMLab Detection Toolbox and Benchmark (github.com)

二、mmdetection环境配置

1. 创建一个新环境:
conda create -n mmd python==3.9
activate mmd
2.查看电脑配置:
nvidia-smi

可以看到驱动最高支持的cuda版本为12.2, 电脑已经安装好cuda toolkit11.6:

3.安装torch和cudnn等

根据需求选择安装torch版本是'1.11.0+cu113’,也可以在虚拟环境中安装cudatoolkit和cudnn,以及安装torch1.11GPU版本

pytorch v1.11.0PyTorch官网历史版本链接( https://pytorch.org/get-started/previous-versions/)里面,找到v1.11.0的安装命令, 此处选择的是cuda11.3对应的PyTorch安装命令。

# CUDA 11.3

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

测试: 

python
>>import torch
>>torch.__version__
>>torch.cuda.is_available()

可以看到torch对应的版本

3.环境编译:
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .  # or "python s
4.安装mmcv:
pip install mmcv
#也可以选择 pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html


 

三、数据集的准备

数据的格式参考yolov3或者maskrcnn的coco格式
目录格式如下:

mmdetection
----data
--------coco_my(自己的数据集命名)
-------------annotations
-----------------instance_train.json
-----------------instance_val.json
-----------------instance_test.json
-------------train(图片)
-------------val(图片)
-------------test(图片)

一般train,val,test按比例分开然后在config文件里面修改数据集格式

#修改数据集相关设置
img_scale = (640, 640)  # width, height
dataset_type = 'COCODataset'
classes = ('person','bicycle','car','UAV',...) #修改为自己数据集的名称
data = dict(
    train=dict(
        img_prefix=r'E:\mmdetection-main\data\coco_4classes\train2017',
        classes=classes,
        ann_file=r'E:\mmdetection-main\datacoco_4classes\coco\annotations\instances_train2017.json'),
    val=dict(
        img_prefix=r'E:\mmdetection-main\data\coco_4classes\val2017',
        classes=classes,
        ann_file=r'E:\mmdetection-main\data\coco_4classes\annotations\instances_val2017.json'),
    test=dict(
        img_prefix=r'E:\mmdetection-main\data\coco_4classes\test2017',
        classes=classes,
        ann_file=r'E:\mmdetection-main\data\coco_4classes\annotations\instances_test2017.json'))

四、使用mmdetection训练

本文以RetinaNet为例,首先打开configs中的centernet目录下的网络文件,将base中的coco注释掉修改为数据集准备所示,下面的dataset_type和data_root也需要进行修改,与目录对应,num_classes需要修改为4,这与自制数据集类别保持一致。

关于配置文件的学习可以看官方文档:学习配置文件 — MMDetection 3.0.0 文档

下面打开Terminal输入指令即可训练,如果代码没有报错并出现了第二张图中损失函数的变化说明模型正在训练:

python tools/train.py configs/retinanet/retinanet_r18_fpn_1x_my.py --work-dir work_dirs/retinanet

成功运行:

<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TracyGC

创作不易,需要花花~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值