【FJOI2016】所有公共子序列问题

本文介绍了一种基于序列自动机的算法实现方案,通过构造自动机处理字符串匹配问题,并使用爆搜策略进行优化。文章提供了详细的代码实现及注释说明,帮助读者理解如何通过记忆化搜索减少重复计算。

内存限制:256 MiB 时间限制:1000 ms

问题描述

引用块内容

输入格式

引用块内容

输出格式

引用块内容

样例输入 1

6 6
GCTACT
GATCCT
1

样例输出 1

A
AC
ACT
ATC
CC
CCT
CTG
GA
GAC
GACT
GAT
GC
GCC
GCCT
GCT
GT
GTC
GTCT
GTTT
TC
TCT
TT
26

样例输入 2

10 10
FRWMQJBFMW
AFBZOMWSIJ
1

样例输出 2

B
BM
BMW
BW
F
FB
FBM
FBMW
FBW
FJ
FM
FMJ
FMW
FW
FWJ
J
M
MJ
MW
W
WJ
22

提示

1≤m,n≤3010 答案….很大啦

题解

序列自动机板题。对字符串X,YX,Y分别建机子,在两个机子上同时跑爆搜就可以了(记忆化优化一下),要输出字符串的话边搜边输出就行了(这时不能记忆化)。注意大数据会用到高精度,而且要压位避免爆空间……

代码

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,k,id[200];
char a[3015],b[3015],s[3015],pre[60];
bool flag[3015][3015];
struct segAM
{
    int Next[3015][60],Last[60],par[3015],tot,rt;
    segAM()
    {
        tot=rt=1;
        for(int i=0;i<60;i++) Last[i]=rt;
    }
    void insert(char c)
    {
        int p=id[c];
        par[++tot]=Last[p];
        for(int i=0;i<52;i++)
            for(int j=Last[i];j&&!Next[j][p];j=par[j]) Next[j][p]=tot;
        Last[p]=tot;
    }
}tra,trb;
struct Biginteger
{
    int num[21],len;
    void operator += (const Biginteger &x)
    {
        len=max(len,x.len);
        for(int i=0;i<len;i++)
        {
            num[i]+=x.num[i];
            num[i+1]+=(num[i]>=1e9);
            num[i]-=(num[i]>=1e9)?1e9:0;
        }
        if(num[len]) len++;
    }
    void output()
    {
        printf("%d",num[len-1]);
        for(int i=len-2;i>=0;i--) printf("%09d",num[i]);
        puts("");
    }
}f[3015][3015],one,zero;
void getstr(int x,int y,int z)
{
    if(!x||!y) return;
    s[z]=0,printf("%s\n",s);
    for(int i=0;i<60;i++) s[z]=pre[i],getstr(tra.Next[x][i],trb.Next[y][i],z+1);
}
Biginteger getans(int x,int y)
{
    if(!x||!y) return zero;
    if(flag[x][y]) return f[x][y];
    flag[x][y]=true,f[x][y]+=one;
    for(int i=0;i<60;i++) f[x][y]+=getans(tra.Next[x][i],trb.Next[y][i]);
    return f[x][y];
}
int main()
{
    for(int i=0,j='A';i<26;i++,j++) id[j]=i,pre[i]=j;
    for(int i=26,j='a';i<52;i++,j++) id[j]=i,pre[i]=j;
    one.len=1,one.num[0]++,zero.len=1,zero.num[0]=0;
    scanf("%d%d%s%s%d",&n,&m,a,b,&k);
    for(int i=0;i<n;i++) tra.insert(a[i]);
    for(int i=0;i<m;i++) trb.insert(b[i]);
    if(k) getstr(1,1,0);
    getans(1,1);
    f[1][1].output();
    return 0;
}
为什么会从第三个点开始TLE? # P8868 [NOIP2022] 比赛 ## 题目描述 小 N 和小 O 会在 2022 年 11 月参加一场盛大的程序设计大赛 NOIP!小 P 会作为裁判主持竞赛。小 N 和小 O 各自率领了一支 $n$ 个人的队伍,选手在每支队伍内都是从 $1$ 到 $n$ 编号。每一个选手都有相应的程序设计水平。具体的,小 N 率领的队伍中,编号为 $i$($1 \leq i \leq n$)的选手的程序设计水平为 $a _ i$;小 O 率领的队伍中,编号为 $i$($1 \leq i \leq n$)的选手的程序设计水平为 $b _ i$。特别地,$\{a _ i\}$ 和 $\{b _ i\}$ 还分别构成了从 $1$ 到 $n$ 的排列。 每场比赛前,考虑到路途距离,选手连续参加比赛等因素,小 P 会选择两个参数 $l, r$($1 \leq l \leq r \leq n$),表示这一场比赛会邀请两队中编号属于 $[l, r]$ 的所有选手来到现场准备比赛。在比赛现场,小 N 和小 O 会以掷骰子的方式挑选出参数 $p, q$($l \leq p \leq q \leq r$),只有编号属于 $[p, q]$ 的选手才能参赛。为了给观众以最精彩的比赛,两队都会派出编号在 $[p, q]$ 内的、程序设计水平值最大的选手参加比赛。假定小 N 派出的选手水平为 $m _ a$,小 O 派出的选手水平为 $m _ b$,则比赛的精彩程度为 $m _ a \times m _ b$。 NOIP 总共有 $Q$ 场比赛,每场比赛的参数 $l, r$ 都已经确定,但是 $p, q$ 还没有抽取。小 P 想知道,对于每一场比赛,在其所有可能的 $p, q$($l \leq p \leq q \leq r$)参数下的比赛的精彩程度之和。由于答案可能非常之大,你只需要对每一场答案输出结果对 $2 ^ {64}$ 取模的结果即可。 ## 输入格式 第一行包含两个正整数 $T, n$,分别表示测试点编号和参赛人数。如果数据为样例则保证 $T = 0$。 第二行包含 $n$ 个正整数,第 $i$ 个正整数为 $a _ i$,表示小 N 队伍中编号为 $i$ 的选手的程序设计水平。 第三行包含 $n$ 个正整数,第 $i$ 个正整数为 $b _ i$,表示小 O 队伍中编号为 $i$ 的选手的程序设计水平。 第四行包含一个正整数 $Q$,表示比赛场数。 接下来的 $Q$ 行,第 $i$ 行包含两个正整数 $l _ i, r _ i$,表示第 $i$ 场比赛的参数 $l, r$。 ## 输出格式 输出 $Q$ 行,第 $i$ 行包含一个非负整数,表示第 $i$ 场比赛中所有可能的比赛的精彩程度之和对 $2 ^ {64}$ 取模的结果。 ## 输入输出样例 #1 ### 输入 #1 ``` 0 2 2 1 1 2 1 1 2 ``` ### 输出 #1 ``` 8 ``` ## 输入输出样例 #2 ### 输入 #2 ``` 见附件下的 match/match2.in。 ``` ### 输出 #2 ``` 见附件下的 match/match2.ans。 ``` ## 输入输出样例 #3 ### 输入 #3 ``` 见附件下的 match/match3.in。 ``` ### 输出 #3 ``` 见附件下的 match/match3.ans。 ``` ## 说明/提示 **【样例 1 解释】** 当 $p = 1, q = 2$ 的时候,小 N 会派出 $1$ 号选手,小 O 会派出 $2$ 号选手,比赛精彩程度为 $2 \times 2 = 4$。 当 $p = 1, q = 1$ 的时候,小 N 会派出 $1$ 号选手,小 O 会派出 $1$ 号选手,比赛精彩程度为 $2 \times 1 = 2$。 当 $p = 2, q = 2$ 的时候,小 N 会派出 $2$ 号选手,小 O 会派出 $2$ 号选手,比赛精彩程度为 $1 \times 2 = 2$。 **【样例 2】** 该样例满足测试点 $1 \sim 2$ 的限制。 **【样例 3】** 该样例满足测试点 $3 \sim 5$ 的限制。 **【数据范围】** 对于所有数据,保证:$1 \leq n, Q \leq 2.5 \times 10 ^ 5$,$1 \leq l _ i \leq r _ i \leq n$,$1 \leq a _ i, b _ i \leq n$ 且 $\{a _ i\}$ 和 $\{b _ i\}$ 分别构成了从 $1$ 到 $n$ 的排列。 ::cute-table{tuack} | 测试点 | $n$ | $Q$ | 特殊性质 A | 特殊性质 B | | :----------: | :----------: | :----------: | :----------: | :----------: | | $1, 2$ | $\leq 30$ | $\leq 30$ | 是 | 是 | | $3, 4, 5$ | $\leq 3,000$ | $\leq 3,000$ | ^ | ^ | | $6, 7$ | $\leq 10 ^ 5$ | $\leq 5$ | ^ | ^ | | $8, 9$ | $\leq 2.5 \times 10 ^ 5$ | ^ | ^ | ^ | | $10, 11$ | $\leq 10 ^ 5$ | ^ | 否 | 否 | | $12, 13$ | $\leq 2.5 \times 10 ^ 5$ | ^ | ^ | ^ | | $14, 15$ | $\leq 10 ^ 5$ | $\leq 10 ^ 5$ | 是 | 是 | | $16, 17$ | $\leq 2.5 \times 10 ^ 5$ | $\leq 2.5 \times 10 ^ 5$ | ^ | ^ | | $18, 19$ | $\leq 10 ^ 5$ | $\leq 10 ^ 5$ | ^ | 否 | | $20, 21$ | $\leq 2.5 \times 10 ^ 5$ | $\leq 2.5 \times 10 ^ 5$ | ^ | ^ | | $22, 23$ | $\leq 10 ^ 5$ | $\leq 10 ^ 5$ | 否 | ^ | | $24, 25$ | $\leq 2.5 \times 10 ^ 5$ | $\leq 2.5 \times 10 ^ 5$ | ^ | ^ | 特殊性质 A:保证 $a$ 是均匀随机生成的 $1 \sim n$ 的排列。 特殊性质 B:保证 $b$ 是均匀随机生成的 $1 \sim n$ 的排列。 #include<bits/stdc++.h> using namespace std; int a[250005],b[250005]; struct node{ int l,r; int maxn; }; node ta[250005*4]; node tb[250005*4]; void builda(int i,int le,int ri){ ta[i].l=le; ta[i].r=ri; if(le==ri){ ta[i].maxn=a[le]; return; } int mid=(ri-le)/2+le; builda(i*2,le,mid); builda(i*2+1,mid+1,ri); ta[i].maxn=max(ta[i*2].maxn,ta[i*2+1].maxn); } void buildb(int i,int le,int ri){ tb[i].l=le; tb[i].r=ri; if(le==ri){ tb[i].maxn=b[le]; return; } int mid=(ri-le)/2+le; buildb(i*2,le,mid); buildb(i*2+1,mid+1,ri); tb[i].maxn=max(tb[i*2].maxn,tb[i*2+1].maxn); } long long querya(int i, int le, int ri){ if(ta[i].l>=le&&ta[i].r<=ri){ return ta[i].maxn; } int mid=(ta[i].l+ta[i].r)/2; if(ri<=mid){ return querya(i*2,le,ri); } else if(le>mid){ return querya(i*2+1,le,ri); } else{ return max(querya(i*2,le,ri),querya(i*2+1,le,ri)); } } long long queryb(int i, int le, int ri){ if(tb[i].l>=le&&tb[i].r<=ri){ return tb[i].maxn; } int mid=(tb[i].l+tb[i].r)/2; if(ri<=mid){ return queryb(i*2,le,ri); } else if(le>mid){ return queryb(i*2+1,le,ri); } else{ return max(queryb(i*2,le,ri),queryb(i*2+1,le,ri)); } } int main(){ int t,n; cin>>t>>n; for(int i=1;i<=n;i++){ cin>>a[i]; } for(int i=1;i<=n;i++){ cin>>b[i]; } builda(1,1,n); buildb(1,1,n); int q; cin>>q; while(q--){ int l,r; cin>>l>>r; long long ans=0; for(int i=l;i<=r;i++){ for(int j=i;j<=r;j++){ long long ma=querya(1,i,j); long long mb=queryb(1,i,j); ans=(ans+ma*mb); } } cout<<ans<<endl; } return 0; }
最新发布
11-27
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值