【Atcoder - ARC101D/ABC107D】Median of Medians

这是一个关于Atcoder比赛中的ARC101D/ABC107D问题的解析,主要讨论如何在不构建新序列m的情况下,通过二分查找算法确定新序列的中位数。通过将原序列中的数与二分查找的可能中位数进行比较,转换问题为判断序列中大于中位数的元素数量,进而利用前缀和和归并排序(或CDQ分治)解决二维偏序问题,实现O(nlog^2n)时间复杂度的解决方案。

@Median of Medians@


@题目描述 - English@

Time limit : 2sec / Memory limit : 1024MB

Score : 700 points

Problem Statement
We will define the median of a sequence b of length M, as follows:

Let b’ be the sequence obtained by sorting b in non-decreasing order. Then, the value of the (M/2+1)-th element of b’ is the median of b. Here, /is integer division, rounding down.
For example, the median of (10,30,20) is 20; the median of (10,30,20,40) is 30; the median of (10,10,10,20,30) is 10.

Snuke comes up with the following problem.

You are given a sequence a of length N. For each pair (l,r) (1≤l≤r≤N), let ml,r be the median of the contiguous subsequence (al,al+1,…,ar) of a. We will list ml,r for all pairs (l,r) to create a new sequence m. Find the median of m.

Constraints
1≤N≤10^5
ai is an integer.
1≤ai≤10^9

Input
Input is given from Standard Input in the following format:
N
a1 a2 … aN

Output
Print the median of m.

Sample Input 1
3
10 30 20
Sample Output 1
30

The median of each contiguous subsequence of a is as follows:
The median of (10) is 10.
The median of (30) is 30.
The media

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值