HDU 6055 Regular polygon

本文介绍了一个算法问题:如何确定给定点集能在二维平面上构成多少种不同的正多边形。输入为一系列整数坐标点,输出则是能构成的不同正多边形的数量。通过比较和搜索算法来解决这一几何问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Regular polygon
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 523 Accepted Submission(s): 201

Problem Description
On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.

Input
The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)

Output
For each case, output a number means how many different regular polygon these points can make.

Sample Input

4
0 0
0 1
1 0
1 1
6
0 0
0 1
1 0
1 1
2 0
2 1

Sample Output

1
2

Source
2017 Multi-University Training Contest - Team 2

#include<cstdio>
#include<algorithm>
#include <vector>
using namespace std;
int n;
int sum;
struct note
{
    int x,y;
} a[505];
note tt;
int cmp(note a,note b)
{
    if(a.x==b.x)
        return a.y<b.y;
    return a.x<b.x;
}

int main()
{

    while(~scanf("%d",&n))
    {
        sum=0;
        for(int i=0; i<n; i++)
        {
            scanf("%d %d",&a[i].x,&a[i].y);
        }
        sort(a,a+n,cmp);
        for(int i=0; i<n; i++)
        {
            for(int j=i+1; j<n; j++)
            {
                tt.x=a[i].x-a[j].y+a[i].y;
                tt.y=a[i].y+a[j].x-a[i].x;
                if(!binary_search(a,a+n,tt,cmp)) continue;

                tt.x=a[j].x-a[j].y+a[i].y;
                tt.y=a[j].y+a[j].x-a[i].x;
                if(!binary_search(a,a+n,tt,cmp)) continue;

                sum++;
            }
        }
        printf("%d\n",sum/2);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值