11995 - I Can Guess the Data Structure!


思路:即对数据结构进行模拟,若是其中一个,则输出对应数据结构,若可能是其中的两个,则输出not sure 若都不是则输出impossible。
代码:
#include<stdio.h>
#include<stack>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
//0: queue 1:stack 2:Priority Queue
int type[3];
//操作结构 保存操作的类型与操作数
struct oper {
	int op, d;
}o[1005];
int main() {
	int n;
	while (~scanf("%d", &n)){
		memset(type, 0, sizeof type);
		for (int i = 0; i < n; i++)
			scanf("%d%d", &o[i].op, &o[i].d);
		queue<int>q;
		stack<int>s;
		priority_queue<int>pq;
		for (int i = 0; i < n; i++) {
			if (o[i].op == 1) {
				q.push(o[i].d);
			}
			else {
				if (q.empty()) break;
				int e = q.front();
				q.pop();
				if (o[i].d != e) break;
			}
			if (i == n - 1) type[0] = 1;
		}
		for (int i = 0; i < n; i++) {
			if (o[i].op == 1)
				s.push(o[i].d);
			else {
				if (s.empty()) break;
				int e = s.top();
				s.pop();
				if (e != o[i].d) break;
			}
			if (i == n - 1) type[1] = 1;
		}
		for (int i = 0; i < n; i++) {
			if (o[i].op == 1)
				pq.push(o[i].d);
			else {
				if (pq.empty()) break;
				int e = pq.top();
				pq.pop();
				if (e != o[i].d) break;
			}
			if (i == n - 1) type[2] = 1;
		}
		int sum = 0;
		for (int i = 0; i < 3; i++)
			sum += type[i];
		if (sum == 0)
			printf("impossible\n");
		else if (sum > 1)
			printf("not sure\n");
		else if (type[0] == 1)
			printf("queue\n");
		else if (type[1] == 1)
			printf("stack\n");
		else if (type[2] == 1)
			printf("priority queue\n");
		
		
	}
	return 0;
}







/* This file implements FGMRES (a Generalized Minimal Residual) method. Reference: Saad, 1993. Preconditioning: If the preconditioner is constant then this fgmres code is equivalent to RIGHT-PRECONDITIONED GMRES. FGMRES is a modification of gmres that allows the preconditioner to change at each iteration. Restarts: Restarts are basically solves with x0 not equal to zero. */ #include <../src/ksp/ksp/impls/gmres/fgmres/fgmresimpl.h> /*I "petscksp.h" I*/ #define FGMRES_DELTA_DIRECTIONS 10 #define FGMRES_DEFAULT_MAXK 30 static PetscErrorCode KSPFGMRESGetNewVectors(KSP, PetscInt); static PetscErrorCode KSPFGMRESUpdateHessenberg(KSP, PetscInt, PetscBool, PetscReal *); static PetscErrorCode KSPFGMRESBuildSoln(PetscScalar *, Vec, Vec, KSP, PetscInt); static PetscErrorCode KSPSetUp_FGMRES(KSP ksp) { PetscInt max_k, k; KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; max_k = fgmres->max_k; PetscCall(KSPSetUp_GMRES(ksp)); PetscCall(PetscMalloc1(max_k + 2, &fgmres->prevecs)); PetscCall(PetscMalloc1(max_k + 2, &fgmres->prevecs_user_work)); /* fgmres->vv_allocated includes extra work vectors, which are not used in the additional block of vectors used to store the preconditioned directions, hence the -VEC_OFFSET term for this first allocation of vectors holding preconditioned directions */ PetscCall(KSPCreateVecs(ksp, fgmres->vv_allocated - VEC_OFFSET, &fgmres->prevecs_user_work[0], 0, NULL)); for (k = 0; k < fgmres->vv_allocated - VEC_OFFSET; k++) fgmres->prevecs[k] = fgmres->prevecs_user_work[0][k]; PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESResidual(KSP ksp) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; Mat Amat, Pmat; PetscFunctionBegin; PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat)); /* put A*x into VEC_TEMP */ PetscCall(KSP_MatMult(ksp, Amat, ksp->vec_sol, VEC_TEMP)); /* now put residual (-A*x + f) into vec_vv(0) */ PetscCall(VecWAXPY(VEC_VV(0), -1.0, VEC_TEMP, ksp->vec_rhs)); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESCycle(PetscInt *itcount, KSP ksp) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscReal res_norm; PetscReal hapbnd, tt; PetscBool hapend = PETSC_FALSE; /* indicates happy breakdown ending */ PetscInt loc_it; /* local count of # of dir. in Krylov space */ PetscInt max_k = fgmres->max_k; /* max # of directions Krylov space */ Mat Amat, Pmat; PetscFunctionBegin; /* Number of pseudo iterations since last restart is the number of prestart directions */ loc_it = 0; /* note: (fgmres->it) is always set one less than (loc_it) It is used in KSPBUILDSolution_FGMRES, where it is passed to KSPFGMRESBuildSoln. Note that when KSPFGMRESBuildSoln is called from this function, (loc_it -1) is passed, so the two are equivalent */ fgmres->it = (loc_it - 1); /* initial residual is in VEC_VV(0) - compute its norm*/ PetscCall(VecNorm(VEC_VV(0), NORM_2, &res_norm)); KSPCheckNorm(ksp, res_norm); /* The first entry in the right-hand side of the Hessenberg system is just the initial residual norm */ *RS(0) = res_norm; ksp->rnorm = res_norm; PetscCall(KSPLogResidualHistory(ksp, res_norm)); PetscCall(KSPMonitor(ksp, ksp->its, res_norm)); /* check for the convergence - maybe the current guess is good enough */ PetscCall((*ksp->converged)(ksp, ksp->its, res_norm, &ksp->reason, ksp->cnvP)); if (ksp->reason) { if (itcount) *itcount = 0; PetscFunctionReturn(PETSC_SUCCESS); } /* scale VEC_VV (the initial residual) */ PetscCall(VecScale(VEC_VV(0), 1.0 / res_norm)); /* MAIN ITERATION LOOP BEGINNING*/ /* keep iterating until we have converged OR generated the max number of directions OR reached the max number of iterations for the method */ while (!ksp->reason && loc_it < max_k && ksp->its < ksp->max_it) { if (loc_it) { PetscCall(KSPLogResidualHistory(ksp, res_norm)); PetscCall(KSPMonitor(ksp, ksp->its, res_norm)); } fgmres->it = (loc_it - 1); /* see if more space is needed for work vectors */ if (fgmres->vv_allocated <= loc_it + VEC_OFFSET + 1) { PetscCall(KSPFGMRESGetNewVectors(ksp, loc_it + 1)); /* (loc_it+1) is passed in as number of the first vector that should be allocated */ } /* CHANGE THE PRECONDITIONER? */ /* ModifyPC is the callback function that can be used to change the PC or its attributes before its applied */ PetscCall((*fgmres->modifypc)(ksp, ksp->its, loc_it, res_norm, fgmres->modifyctx)); /* apply PRECONDITIONER to direction vector and store with preconditioned vectors in prevec */ PetscCall(KSP_PCApply(ksp, VEC_VV(loc_it), PREVEC(loc_it))); PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat)); /* Multiply preconditioned vector by operator - put in VEC_VV(loc_it+1) */ PetscCall(KSP_MatMult(ksp, Amat, PREVEC(loc_it), VEC_VV(1 + loc_it))); /* update Hessenberg matrix and do Gram-Schmidt - new direction is in VEC_VV(1+loc_it)*/ PetscCall((*fgmres->orthog)(ksp, loc_it)); /* new entry in hessenburg is the 2-norm of our new direction */ PetscCall(VecNorm(VEC_VV(loc_it + 1), NORM_2, &tt)); KSPCheckNorm(ksp, tt); *HH(loc_it + 1, loc_it) = tt; *HES(loc_it + 1, loc_it) = tt; /* Happy Breakdown Check */ hapbnd = PetscAbsScalar((tt) / *RS(loc_it)); /* RS(loc_it) contains the res_norm from the last iteration */ hapbnd = PetscMin(fgmres->haptol, hapbnd); if (tt > hapbnd) { /* scale new direction by its norm */ PetscCall(VecScale(VEC_VV(loc_it + 1), 1.0 / tt)); } else { /* This happens when the solution is exactly reached. */ /* So there is no new direction... */ PetscCall(VecSet(VEC_TEMP, 0.0)); /* set VEC_TEMP to 0 */ hapend = PETSC_TRUE; } /* note that for FGMRES we could get HES(loc_it+1, loc_it) = 0 and the current solution would not be exact if HES was singular. Note that HH non-singular implies that HES is no singular, and HES is guaranteed to be nonsingular when PREVECS are linearly independent and A is nonsingular (in GMRES, the nonsingularity of A implies the nonsingularity of HES). So we should really add a check to verify that HES is nonsingular.*/ /* Now apply rotations to the new column of Hessenberg (and the right-hand side of the system), calculate new rotation, and get new residual norm at the same time*/ PetscCall(KSPFGMRESUpdateHessenberg(ksp, loc_it, hapend, &res_norm)); if (ksp->reason) break; loc_it++; fgmres->it = (loc_it - 1); /* Add this here in case it has converged */ PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp)); ksp->its++; ksp->rnorm = res_norm; PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp)); PetscCall((*ksp->converged)(ksp, ksp->its, res_norm, &ksp->reason, ksp->cnvP)); /* Catch error in happy breakdown and signal convergence and break from loop */ if (hapend) { if (!ksp->reason) { PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Reached happy break down, but convergence was not indicated. Residual norm = %g", (double)res_norm); ksp->reason = KSP_DIVERGED_BREAKDOWN; break; } } } /* END OF ITERATION LOOP */ if (itcount) *itcount = loc_it; /* Down here we have to solve for the "best" coefficients of the Krylov columns, add the solution values together, and possibly unwind the preconditioning from the solution */ /* Form the solution (or the solution so far) */ /* Note: must pass in (loc_it-1) for iteration count so that KSPFGMRESBuildSoln properly navigates */ PetscCall(KSPFGMRESBuildSoln(RS(0), ksp->vec_sol, ksp->vec_sol, ksp, loc_it - 1)); /* Monitor if we know that we will not return for a restart */ if (ksp->reason == KSP_CONVERGED_ITERATING && ksp->its >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS; if (loc_it && ksp->reason) { PetscCall(KSPMonitor(ksp, ksp->its, res_norm)); PetscCall(KSPLogResidualHistory(ksp, res_norm)); } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPSolve_FGMRES(KSP ksp) { PetscInt cycle_its = 0; /* iterations done in a call to KSPFGMRESCycle */ KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscBool diagonalscale; PetscFunctionBegin; PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale)); PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name); PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp)); ksp->its = 0; PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp)); /* Compute the initial (NOT preconditioned) residual */ if (!ksp->guess_zero) { PetscCall(KSPFGMRESResidual(ksp)); } else { /* guess is 0 so residual is F (which is in ksp->vec_rhs) */ PetscCall(VecCopy(ksp->vec_rhs, VEC_VV(0))); } /* This may be true only on a subset of MPI ranks; setting it here so it will be detected by the first norm computation in the Krylov method */ PetscCall(VecFlag(VEC_VV(0), ksp->reason == KSP_DIVERGED_PC_FAILED)); /* now the residual is in VEC_VV(0) - which is what KSPFGMRESCycle expects... */ PetscCall(KSPFGMRESCycle(&cycle_its, ksp)); while (!ksp->reason) { PetscCall(KSPFGMRESResidual(ksp)); if (ksp->its >= ksp->max_it) break; PetscCall(KSPFGMRESCycle(&cycle_its, ksp)); } /* mark lack of convergence */ if (ksp->its >= ksp->max_it && !ksp->reason) ksp->reason = KSP_DIVERGED_ITS; PetscFunctionReturn(PETSC_SUCCESS); } extern PetscErrorCode KSPReset_FGMRES(KSP); static PetscErrorCode KSPDestroy_FGMRES(KSP ksp) { PetscFunctionBegin; PetscCall(KSPReset_FGMRES(ksp)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFGMRESSetModifyPC_C", NULL)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFlexibleSetModifyPC_C", NULL)); PetscCall(KSPDestroy_GMRES(ksp)); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESBuildSoln(PetscScalar *nrs, Vec vguess, Vec vdest, KSP ksp, PetscInt it) { PetscScalar tt; PetscInt ii, k, j; KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; /* Solve for solution vector that minimizes the residual */ /* If it is < 0, no fgmres steps have been performed */ if (it < 0) { PetscCall(VecCopy(vguess, vdest)); /* VecCopy() is smart, exists immediately if vguess == vdest */ PetscFunctionReturn(PETSC_SUCCESS); } /* so fgmres steps HAVE been performed */ /* solve the upper triangular system - RS is the right side and HH is the upper triangular matrix - put soln in nrs */ if (*HH(it, it) != 0.0) { nrs[it] = *RS(it) / *HH(it, it); } else { nrs[it] = 0.0; } for (ii = 1; ii <= it; ii++) { k = it - ii; tt = *RS(k); for (j = k + 1; j <= it; j++) tt = tt - *HH(k, j) * nrs[j]; nrs[k] = tt / *HH(k, k); } /* Accumulate the correction to the soln of the preconditioned prob. in VEC_TEMP - note that we use the preconditioned vectors */ PetscCall(VecMAXPBY(VEC_TEMP, it + 1, nrs, 0, &PREVEC(0))); /* put updated solution into vdest.*/ if (vdest != vguess) { PetscCall(VecCopy(VEC_TEMP, vdest)); PetscCall(VecAXPY(vdest, 1.0, vguess)); } else { /* replace guess with solution */ PetscCall(VecAXPY(vdest, 1.0, VEC_TEMP)); } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESUpdateHessenberg(KSP ksp, PetscInt it, PetscBool hapend, PetscReal *res) { PetscScalar *hh, *cc, *ss, tt; PetscInt j; KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; hh = HH(0, it); /* pointer to beginning of column to update - so incrementing hh "steps down" the (it+1)th col of HH*/ cc = CC(0); /* beginning of cosine rotations */ ss = SS(0); /* beginning of sine rotations */ /* Apply all the previously computed plane rotations to the new column of the Hessenberg matrix */ /* Note: this uses the rotation [conj(c) s ; -s c], c= cos(theta), s= sin(theta), and some refs have [c s ; -conj(s) c] (don't be confused!) */ for (j = 1; j <= it; j++) { tt = *hh; *hh = PetscConj(*cc) * tt + *ss * *(hh + 1); hh++; *hh = *cc++ * *hh - (*ss++ * tt); /* hh, cc, and ss have all been incremented one by end of loop */ } /* compute the new plane rotation, and apply it to: 1) the right-hand side of the Hessenberg system (RS) note: it affects RS(it) and RS(it+1) 2) the new column of the Hessenberg matrix note: it affects HH(it,it) which is currently pointed to by hh and HH(it+1, it) (*(hh+1)) thus obtaining the updated value of the residual... */ /* compute new plane rotation */ if (!hapend) { tt = PetscSqrtScalar(PetscConj(*hh) * *hh + PetscConj(*(hh + 1)) * *(hh + 1)); if (tt == 0.0) { ksp->reason = KSP_DIVERGED_NULL; PetscFunctionReturn(PETSC_SUCCESS); } *cc = *hh / tt; /* new cosine value */ *ss = *(hh + 1) / tt; /* new sine value */ /* apply to 1) and 2) */ *RS(it + 1) = -(*ss * *RS(it)); *RS(it) = PetscConj(*cc) * *RS(it); *hh = PetscConj(*cc) * *hh + *ss * *(hh + 1); /* residual is the last element (it+1) of right-hand side! */ *res = PetscAbsScalar(*RS(it + 1)); } else { /* happy breakdown: HH(it+1, it) = 0, therefore we don't need to apply another rotation matrix (so RH doesn't change). The new residual is always the new sine term times the residual from last time (RS(it)), but now the new sine rotation would be zero...so the residual should be zero...so we will multiply "zero" by the last residual. This might not be exactly what we want to do here -could just return "zero". */ *res = 0.0; } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESGetNewVectors(KSP ksp, PetscInt it) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscInt nwork = fgmres->nwork_alloc; /* number of work vector chunks allocated */ PetscInt nalloc; /* number to allocate */ PetscInt k; PetscFunctionBegin; nalloc = fgmres->delta_allocate; /* number of vectors to allocate in a single chunk */ /* Adjust the number to allocate to make sure that we don't exceed the number of available slots (fgmres->vecs_allocated)*/ if (it + VEC_OFFSET + nalloc >= fgmres->vecs_allocated) nalloc = fgmres->vecs_allocated - it - VEC_OFFSET; if (!nalloc) PetscFunctionReturn(PETSC_SUCCESS); fgmres->vv_allocated += nalloc; /* vv_allocated is the number of vectors allocated */ /* work vectors */ PetscCall(KSPCreateVecs(ksp, nalloc, &fgmres->user_work[nwork], 0, NULL)); for (k = 0; k < nalloc; k++) fgmres->vecs[it + VEC_OFFSET + k] = fgmres->user_work[nwork][k]; /* specify size of chunk allocated */ fgmres->mwork_alloc[nwork] = nalloc; /* preconditioned vectors */ PetscCall(KSPCreateVecs(ksp, nalloc, &fgmres->prevecs_user_work[nwork], 0, NULL)); for (k = 0; k < nalloc; k++) fgmres->prevecs[it + k] = fgmres->prevecs_user_work[nwork][k]; /* increment the number of work vector chunks */ fgmres->nwork_alloc++; PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPBuildSolution_FGMRES(KSP ksp, Vec ptr, Vec *result) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; if (!ptr) { if (!fgmres->sol_temp) PetscCall(VecDuplicate(ksp->vec_sol, &fgmres->sol_temp)); ptr = fgmres->sol_temp; } if (!fgmres->nrs) { /* allocate the work area */ PetscCall(PetscMalloc1(fgmres->max_k, &fgmres->nrs)); } PetscCall(KSPFGMRESBuildSoln(fgmres->nrs, ksp->vec_sol, ptr, ksp, fgmres->it)); if (result) *result = ptr; PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPSetFromOptions_FGMRES(KSP ksp, PetscOptionItems PetscOptionsObject) { PetscBool flg; PetscFunctionBegin; PetscCall(KSPSetFromOptions_GMRES(ksp, PetscOptionsObject)); PetscOptionsHeadBegin(PetscOptionsObject, "KSP flexible GMRES Options"); PetscCall(PetscOptionsBoolGroupBegin("-ksp_fgmres_modifypcnochange", "do not vary the preconditioner", "KSPFGMRESSetModifyPC", &flg)); if (flg) PetscCall(KSPFGMRESSetModifyPC(ksp, KSPFGMRESModifyPCNoChange, NULL, NULL)); PetscCall(PetscOptionsBoolGroupEnd("-ksp_fgmres_modifypcksp", "vary the KSP based preconditioner", "KSPFGMRESSetModifyPC", &flg)); if (flg) PetscCall(KSPFGMRESSetModifyPC(ksp, KSPFGMRESModifyPCKSP, NULL, NULL)); PetscOptionsHeadEnd(); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPFGMRESSetModifyPC_FGMRES(KSP ksp, KSPFlexibleModifyPCFn *fcn, void *ctx, PetscCtxDestroyFn *d) { PetscFunctionBegin; PetscValidHeaderSpecific(ksp, KSP_CLASSID, 1); ((KSP_FGMRES *)ksp->data)->modifypc = fcn; ((KSP_FGMRES *)ksp->data)->modifydestroy = d; ((KSP_FGMRES *)ksp->data)->modifyctx = ctx; PetscFunctionReturn(PETSC_SUCCESS); } PetscErrorCode KSPReset_FGMRES(KSP ksp) { KSP_FGMRES *fgmres = (KSP_FGMRES *)ksp->data; PetscInt i; PetscFunctionBegin; PetscCall(PetscFree(fgmres->prevecs)); if (fgmres->nwork_alloc > 0) { i = 0; /* In the first allocation we allocated VEC_OFFSET fewer vectors in prevecs */ PetscCall(VecDestroyVecs(fgmres->mwork_alloc[i] - VEC_OFFSET, &fgmres->prevecs_user_work[i])); for (i = 1; i < fgmres->nwork_alloc; i++) PetscCall(VecDestroyVecs(fgmres->mwork_alloc[i], &fgmres->prevecs_user_work[i])); } PetscCall(PetscFree(fgmres->prevecs_user_work)); if (fgmres->modifydestroy) PetscCall((*fgmres->modifydestroy)(&fgmres->modifyctx)); PetscCall(KSPReset_GMRES(ksp)); PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPGMRESSetRestart_FGMRES(KSP ksp, PetscInt max_k) { KSP_FGMRES *gmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; PetscCheck(max_k >= 1, PetscObjectComm((PetscObject)ksp), PETSC_ERR_ARG_OUTOFRANGE, "Restart must be positive"); if (!ksp->setupstage) { gmres->max_k = max_k; } else if (gmres->max_k != max_k) { gmres->max_k = max_k; ksp->setupstage = KSP_SETUP_NEW; /* free the data structures, then create them again */ PetscCall(KSPReset_FGMRES(ksp)); } PetscFunctionReturn(PETSC_SUCCESS); } static PetscErrorCode KSPGMRESGetRestart_FGMRES(KSP ksp, PetscInt *max_k) { KSP_FGMRES *gmres = (KSP_FGMRES *)ksp->data; PetscFunctionBegin; *max_k = gmres->max_k; PetscFunctionReturn(PETSC_SUCCESS); } /*MC KSPFGMRES - Implements the Flexible Generalized Minimal Residual method, flexible GMRES. [](sec_flexibleksp) Options Database Keys: + -ksp_gmres_restart <restart> - the number of Krylov directions to orthogonalize against . -ksp_gmres_haptol <tol> - sets the tolerance for "happy ending" (exact convergence) . -ksp_gmres_preallocate - preallocate all the Krylov search directions initially (otherwise groups of vectors are allocated as needed) . -ksp_gmres_classicalgramschmidt - use classical (unmodified) Gram-Schmidt to orthogonalize against the Krylov space (fast) (the default) . -ksp_gmres_modifiedgramschmidt - use modified Gram-Schmidt in the orthogonalization (more stable, but slower) . -ksp_gmres_cgs_refinement_type <refine_never,refine_ifneeded,refine_always> - determine if iterative refinement is used to increase the stability of the classical Gram-Schmidt orthogonalization. . -ksp_gmres_krylov_monitor - plot the Krylov space generated . -ksp_fgmres_modifypcnochange - do not change the preconditioner between iterations - -ksp_fgmres_modifypcksp - modify the preconditioner using `KSPFGMRESModifyPCKSP()` Level: beginner Notes: See `KSPFlexibleSetModifyPC()` or `KSPFGMRESSetModifyPC()` for how to vary the preconditioner between iterations GMRES requires that the preconditioner used is a linear operator. Flexible GMRES allows the preconditioner to be a nonlinear operator. This allows, for example, Flexible GMRES to use GMRES solvers or other Krylov solvers (which are nonlinear operators in general) inside the preconditioner used by `KSPFGMRES`. For example, the options `-ksp_type fgmres -pc_type ksp -ksp_ksp_type bcgs -ksp_view -ksp_pc_type jacobi` make the preconditioner (or inner solver) be bi-CG-stab with a preconditioner of `PCJACOBI`. `KSPFCG` provides a flexible version of the preconditioned conjugate gradient method. Only right preconditioning is supported. The following options `-ksp_type fgmres -pc_type ksp -ksp_ksp_type bcgs -ksp_view -ksp_pc_type jacobi` make the preconditioner (or inner solver) be bi-CG-stab with a preconditioner of `PCJACOBI` Developer Note: This object is subclassed off of `KSPGMRES`, see the source code in src/ksp/ksp/impls/gmres for comments on the structure of the code Contributed by: Allison Baker .seealso: [](ch_ksp), [](sec_flexibleksp), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `KSPGMRES`, `KSPLGMRES`, `KSPFCG`, `KSPGMRESSetRestart()`, `KSPGMRESSetHapTol()`, `KSPGMRESSetPreAllocateVectors()`, `KSPGMRESSetOrthogonalization()`, `KSPGMRESGetOrthogonalization()`, `KSPGMRESClassicalGramSchmidtOrthogonalization()`, `KSPGMRESModifiedGramSchmidtOrthogonalization()`, `KSPGMRESCGSRefinementType`, `KSPGMRESSetCGSRefinementType()`, `KSPGMRESGetCGSRefinementType()`, `KSPGMRESMonitorKrylov()`, `KSPFGMRESSetModifyPC()`, `KSPFGMRESModifyPCKSP()` M*/ PETSC_EXTERN PetscErrorCode KSPCreate_FGMRES(KSP ksp) { KSP_FGMRES *fgmres; PetscFunctionBegin; PetscCall(PetscNew(&fgmres)); ksp->data = (void *)fgmres; ksp->ops->buildsolution = KSPBuildSolution_FGMRES; ksp->ops->setup = KSPSetUp_FGMRES; ksp->ops->solve = KSPSolve_FGMRES; ksp->ops->reset = KSPReset_FGMRES; ksp->ops->destroy = KSPDestroy_FGMRES; ksp->ops->view = KSPView_GMRES; ksp->ops->setfromoptions = KSPSetFromOptions_FGMRES; ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_GMRES; ksp->ops->computeeigenvalues = KSPComputeEigenvalues_GMRES; PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_RIGHT, 3)); PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_RIGHT, 1)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetPreAllocateVectors_C", KSPGMRESSetPreAllocateVectors_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetOrthogonalization_C", KSPGMRESSetOrthogonalization_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESGetOrthogonalization_C", KSPGMRESGetOrthogonalization_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetRestart_C", KSPGMRESSetRestart_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESGetRestart_C", KSPGMRESGetRestart_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFGMRESSetModifyPC_C", KSPFGMRESSetModifyPC_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPFlexibleSetModifyPC_C", KSPFGMRESSetModifyPC_FGMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESSetCGSRefinementType_C", KSPGMRESSetCGSRefinementType_GMRES)); PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPGMRESGetCGSRefinementType_C", KSPGMRESGetCGSRefinementType_GMRES)); fgmres->haptol = 1.0e-30; fgmres->q_preallocate = 0; fgmres->delta_allocate = FGMRES_DELTA_DIRECTIONS; fgmres->orthog = KSPGMRESClassicalGramSchmidtOrthogonalization; fgmres->nrs = NULL; fgmres->sol_temp = NULL; fgmres->max_k = FGMRES_DEFAULT_MAXK; fgmres->Rsvd = NULL; fgmres->orthogwork = NULL; fgmres->modifypc = KSPFGMRESModifyPCNoChange; fgmres->modifyctx = NULL; fgmres->modifydestroy = NULL; fgmres->cgstype = KSP_GMRES_CGS_REFINE_NEVER; PetscFunctionReturn(PETSC_SUCCESS); }中文注释,转成Fortran
最新发布
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值