codeforces544E

You have multiset of n strings of the same length, consisting of lowercase English letters. We will say that those strings are easy to remember if for each string there is some position i and some letter c of the English alphabet, such that this string is the only string in the multiset that has letter c in position i.

For example, a multiset of strings {“abc”, “aba”, “adc”, “ada”} are not easy to remember. And multiset {“abc”, “ada”, “ssa”} is easy to remember because:

the first string is the only string that has character c in position 3;
the second string is the only string that has character d in position 2;
the third string is the only string that has character s in position 2.
You want to change your multiset a little so that it is easy to remember. For aij coins, you can change character in the j-th position of the i-th string into any other lowercase letter of the English alphabet. Find what is the minimum sum you should pay in order to make the multiset of strings easy to remember.

Input
The first line contains two integers n, m (1 ≤ n, m ≤ 20) — the number of strings in the multiset and the length of the strings respectively. Next n lines contain the strings of the multiset, consisting only of lowercase English letters, each string’s length is m.

Next n lines contain m integers each, the i-th of them contains integers ai1, ai2, …, aim (0 ≤ aij ≤ 106).

Output
Print a single number — the answer to the problem.

Example
Input
4 5
abcde
abcde
abcde
abcde
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
Output
3
Input
4 3
abc
aba
adc
ada
10 10 10
10 1 10
10 10 10
10 1 10
Output
2
Input
3 3
abc
ada
ssa
1 1 1
1 1 1
1 1 1
Output
0

这种矩阵DP的,数据小的阶乘又无法接受的,要考虑状压DP,矩阵上面就直接考虑横向转移和竖向转移。
每次找最低位DP即可。

%:pragma GCC optimize(4)
using namespace std;
#include<bits/stdc++.h>
#define N 30
int dp[1<<25];
int n,m;
int a[N][N];
#define r(x) scanf("%d",&x)
#define F(i,a,b) for(int i=a;i<=b;i++) 
int qi[N][N];
int st[N][N];
char c[N][N];
int lowbit(int x)
{
    return (x&(-x));
}
int main()
{
    r(n);r(m);
    for(int i=1;i<=n;i++) scanf("%s",c[i]+1);
    F(i,1,n)
    F(j,1,m) 
    r(a[i][j]);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            int it=-2e9,sum=0;
            for(int k=1;k<=n;k++)
            {
                if(c[k][j]==c[i][j])
                {
                    st[i][j]|=(1<<(k-1));
                    sum+=a[k][j];
                    it=max(it,a[k][j]);
                } 
            }
            sum-=it;
            qi[i][j]=sum;
                    }
    }
    for(int i=0;i<=(1<<n)-1;i++) dp[i]=2e9;//初值赋太大 
    dp[0]=0;
    for(int i=0;i<=(1<<n)-1;i++)
    {
        int k;
        for(k=0;k<=n;k++)
        if(!((1<<k)&i))
        {
            break;
        }
        for(int j=1;j<=m;j++)
        {
            dp[i|(1<<k)]=min(dp[i|(1<<k)],dp[i]+a[k+1][j]);
            dp[i|st[k+1][j]]=min(dp[i]+qi[k+1][j],dp[i|st[k+1][j]]);
        }
    }
    cout<<dp[(1<<n)-1]<<endl;
}
内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值