An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.


Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
--------------------------------------这是题目和解题的分割线--------------------------------------
AVL的相关操作都在这儿了。
#include<cstdio>
#include<algorithm>
using namespace std;
struct node
{
int data,height;
node *left,*right;
};
//获取高度
int getHeight(node* root)
{
if(root==NULL) return 0;
return root->height;
}
//获取平衡因子,即左子树和右子树的高度差
int getBalance(node* root)
{
return getHeight(root->left)-getHeight(root->right);
}
//更新高度,进行操作后,此时树的高度等于左子树和右子树的最大高度+本身的1
int updateHeight(node* root)
{
return max(getHeight(root->left),getHeight(root->right))+1;
}
//左旋
node* leftR(node* root)
{
node* tmp = root->right;
root->right = tmp->left;
tmp->left = root;
//顺序很重要,root此时是tmp的子树,要先更新子树root高度,再更新tmp高度
root->height = updateHeight(root);//记得操作后更新高度
tmp->height = updateHeight(tmp);
return tmp;
}
//右旋,对应左旋的左右子树颠倒
node* rightR(node* root)
{
node* tmp = root->left;
root->left = tmp->right;
tmp->right = root;
root->height = updateHeight(root);
tmp->height = updateHeight(tmp);
return tmp;
}
//插入
node* insertT(node* root,int data)
{
//NULL是要插入的地方
if(root==NULL)
{
root = new node; //申请内存
root->data = data;
root->left = root->right = NULL;
root->height = 1; //一个结点高度为1
}
else
{
//插入至右子树
if(data>root->data)
{
root->right = insertT(root->right,data);
root->height = updateHeight(root); //更新高度
//不平衡
if(getBalance(root)==-2)
{
//如果不平衡都在右边,直接看成整体,左旋
if(getBalance(root->right)==-1)
root = leftR(root);
//如果不平衡上面是右边下面是左边,先把下面右旋成上一个if的情况,再处理
else if(getBalance(root->right)==1)
{
root->right = rightR(root->right);
root = leftR(root);
}
}
}
else
{
root->left = insertT(root->left,data);
root->height = updateHeight(root);
if(getBalance(root)==2)
{
if(getBalance(root->left)==1)
root = rightR(root);
else if(getBalance(root->left)==-1)
{
root->left = leftR(root->left);
root = rightR(root);
}
}
}
}
return root;
}
int main()
{
int n,data,i;
node* tree = NULL;
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&data);
tree = insertT(tree,data);
}
//调整过后,第一个结点即根结点
printf("%d\n",tree->data);
return 0;
}
本文详细介绍了AVL树的自我平衡机制,通过旋转规则确保二叉搜索树的平衡,提供了完整的AVL树插入操作代码实现,包括左旋、右旋、更新高度和平衡因子等关键步骤。
4131

被折叠的 条评论
为什么被折叠?



