移动所有球到每个盒子所需要的最小操作数【LC1769】
You have
nboxes. You are given a binary stringboxesof lengthn, whereboxes[i]is'0'if theithbox is empty, and'1'if it contains one ball.In one operation, you can move one ball from a box to an adjacent box. Box
iis adjacent to boxjifabs(i - j) == 1. Note that after doing so, there may be more than one ball in some boxes.Return an array
answerof sizen, whereanswer[i]is the minimum number of operations needed to move all the balls to theithbox.Each
answer[i]is calculated considering the initial state of the boxes.
我承认我飘了
暴力
-
思路:暴力
如果第jjj个盒子里装有小球,那么移到到第iii个盒子,所需要的操作数为abs(j−i)abs(j-i)abs(j−i),累加计算总和既可
-
实现
class Solution { public int[] minOperations(String boxes) { int n = boxes.length(); int[] res = new int[n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ if (boxes.charAt(j) == '1'){ res[i] += Math.abs(j - i); } } } return res; } }-
复杂度
- 时间复杂度:O(n2)O(n^2)O(n2)
- 空间复杂度:O(1)O(1)O(1)
-
贡献
-
思路:将所有球移入盒子iii所需要的操作数取决于其右侧盒子内的小球和左侧盒子内的小球至其的距离,最终操作数即为距离的累加和。因此盒子i+1i+1i+1所需要的操作数,可以由盒子iii所需要的操作数推出。
- 假设所有球移入盒子iii所需要的操作数为resires_iresi,右侧盒子的小球个数为rightiright_irighti,左侧盒子的小球个数为leftileft_ilefti(包括其自身),那么盒子i+1i+1i+1所需要的操作数为resi+lefti−rightires_i+left_i-right_iresi+lefti−righti
-
实现
class Solution { public int[] minOperations(String boxes) { int n = boxes.length(); int[] res = new int[n]; int left = boxes.charAt(0) - '0'; int right = 0; for (int i = 1; i < n; i++){ if (boxes.charAt(i) == '1'){ right++; res[0] += i; } } for (int i = 1; i < n; i++){ res[i] = res[i-1] + left - right; if (boxes.charAt(i) == '1'){ left++; right--; } } return res; } }-
复杂度
- 时间复杂度:O(n)O(n)O(n)
- 空间复杂度:O(1)O(1)O(1)
-

本文介绍了一种高效算法,用于计算将所有球移动到每个盒子所需的最小操作数。通过巧妙利用前后位置的球数量变化,实现了从O(n^2)到O(n)的时间复杂度优化。

被折叠的 条评论
为什么被折叠?



