UDEV SCSI Rules Configuration for ASM in Oracle Linux 5 and 6

本文介绍如何在Oracle Linux 5和6中为Oracle Automatic Storage Manager (ASM)配置UDEV规则来确保磁盘的一致性和正确的所有权及权限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UDEV SCSI Rules Configuration for ASM in Oracle Linux 5 and 6


For Oracle Automatic Storage Manager (ASM) to use disks, it needs to be able to identify the devices consistently and for them to have the correct ownership and permissions. In Linux you can use ASMLib to manage these tasks, but it is seen as an additional layer of complexity and has never really gained any popularity. Instead, many people use the Linux device manager "udev" to perform these tasks. This article presents a brief overview of setting up udev rules with respect to disks for use with ASM in Oracle 11g. The examples are all done using Oracle Linux 5 and 6, so they will be consistent with RHEL and CentOS 5 and 6.


Background
Identify the Disks (/sbin/scsi_id)
Make SCSI Devices Trusted
Create UDEV Rules File
Load Updated Block Device Partitions (/sbin/partprobe)
Test Rules (udevtest)
Restart UDEV Service
Check Ownership and Permissions
Background


Essentially, what udev does is apply rules defined in files in the "/etc/udev/rules.d" directory to the device nodes listed in the "/dev" directory. The rules can be defined in a variety of ways, but what we need to do is identify the device and say what we want udev to do with it.


In this case I know all my disk devices are named "/dev/sd?1", where the "?" represents a letter from a-d, so I can identify the devices of interest using the following rule parameters.


KERNEL=="sd?1", BUS=="scsi"
I want to tie each specific device to an alias, so it is always identified the same way, regardless of the device name Linux assigns it. So I need to be able to test each device that matches the previous pattern to see if it is the disk I am interested in. Each disk has a unique SCSI ID, so I can place a test into the rule, telling it how to perform the test, and the result it should return for a positive match. The following rule parameters explain how to test the device and what result constitutes a match in Oracle Linux 5.


PROGRAM=="/sbin/scsi_id -g -u -s /block/$parent", RESULT=="SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_"
The scsi_id command works a little differently in Oracle Linux 6, so for that the following test works better.


PROGRAM=="/sbin/scsi_id -g -u -d /dev/$parent", RESULT=="SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_"
Once we have identified the specific device of interest, we need to indicate what actions should be performed on it. The following parameters specify an alias, the ownership and the permissions for the device.


NAME="asm-disk1", OWNER="oracle", GROUP="dba", MODE="0660"
So the whole rule for each disk will look something like this in Oracle Linux 5.


KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -s /block/$parent", RESULT=="SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_", NAME="asm-disk1", OWNER="oracle", GROUP="dba", MODE="0660"
Or this in Oracle Linux 6.


KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -d /dev/$parent", RESULT=="SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_", NAME="asm-disk1", OWNER="oracle", GROUP="dba", MODE="0660"
This means that the device pointing to the partition "sd*1" on the disk with the SCSI ID of "SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_" will always be called "/dev/asm-disk1", regardless of the letter "?" Linux assigns when the device is discovered. In addition, the device will have the correct ownership and permissions for ASM.


There are a number of wildcards and matching patterns that can be used if you don't want to write device-specific rules.


Now we know roughly what we are trying to achieve, we will look at each step necessary for setting up the disks for ASM to use.


Identify the Disks (/sbin/scsi_id)


We are going to write device-specific rules, so we need to be able to identify each device consistently, irrespective of the order in which Linux discovers it. To do this we are going to use the SCSI ID for each disk (not the partition), which we get using the scsi_id command. The "-s" option makes the paths relative to the "/sys" directory. For Oracle Linux 5, use the following command.


# /sbin/scsi_id -g -u -s /block/sdb
SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_
# /sbin/scsi_id -g -u -s /block/sdc
SATA_VBOX_HARDDISK_VB46dec7e0-192e8000_
# /sbin/scsi_id -g -u -s /block/sdd
SATA_VBOX_HARDDISK_VBce8c63bb-ac67a172_
# /sbin/scsi_id -g -u -s /block/sde
SATA_VBOX_HARDDISK_VB7437a3b7-95b199cd_

The "-s" is not available in Oracle Linux 6, so you must use the following syntax.
# /sbin/scsi_id -g -u -d /dev/sdb
SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_
# /sbin/scsi_id -g -u -d /dev/sdc
SATA_VBOX_HARDDISK_VB46dec7e0-192e8000_
# /sbin/scsi_id -g -u -d /dev/sdd
SATA_VBOX_HARDDISK_VBce8c63bb-ac67a172_
# /sbin/scsi_id -g -u -d /dev/sde
SATA_VBOX_HARDDISK_VB7437a3b7-95b199cd_

Make SCSI Devices Trusted


Add the following to the "/etc/scsi_id.config" file to configure SCSI devices as trusted.


options=-g
Create UDEV Rules File


Create the "/etc/udev/rules.d/99-oracle-asmdevices.rules" file.


# vi /etc/udev/rules.d/99-oracle-asmdevices.rules
The file should contain the following lines for Oracle Linux 5. The PROGRAM parameter must match the command you used to retrieve the SCSI ID, and the RESULT parameter must match the value returned from your disks.


KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -s /block/$parent", RESULT=="SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_", NAME="asm-disk1", OWNER="oracle", GROUP="dba", MODE="0660"
KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -s /block/$parent", RESULT=="SATA_VBOX_HARDDISK_VB46dec7e0-192e8000_", NAME="asm-disk2", OWNER="oracle", GROUP="dba", MODE="0660"
KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -s /block/$parent", RESULT=="SATA_VBOX_HARDDISK_VBce8c63bb-ac67a172_", NAME="asm-disk3", OWNER="oracle", GROUP="dba", MODE="0660"
KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -s /block/$parent", RESULT=="SATA_VBOX_HARDDISK_VB7437a3b7-95b199cd_", NAME="asm-disk4", OWNER="oracle", GROUP="dba", MODE="0660"
The equivalent for Oracle Linux 6 is shown below.


KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -d /dev/$parent", RESULT=="SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_", NAME="asm-disk1", OWNER="oracle", GROUP="dba", MODE="0660"
KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -d /dev/$parent", RESULT=="SATA_VBOX_HARDDISK_VB46dec7e0-192e8000_", NAME="asm-disk2", OWNER="oracle", GROUP="dba", MODE="0660"
KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -d /dev/$parent", RESULT=="SATA_VBOX_HARDDISK_VBce8c63bb-ac67a172_", NAME="asm-disk3", OWNER="oracle", GROUP="dba", MODE="0660"
KERNEL=="sd?1", BUS=="scsi", PROGRAM=="/sbin/scsi_id -g -u -d /dev/$parent", RESULT=="SATA_VBOX_HARDDISK_VB7437a3b7-95b199cd_", NAME="asm-disk4", OWNER="oracle", GROUP="dba", MODE="0660"
Load Updated Block Device Partitions (/sbin/partprobe)


Load updated block device partition tables.


# /sbin/partprobe /dev/sdb1
# /sbin/partprobe /dev/sdc1
# /sbin/partprobe /dev/sdd1
# /sbin/partprobe /dev/sde1
Test Rules (udevtest)


Test the rules are working as expected.


# udevtest /block/sdb/sdb1
# udevtest /block/sdc/sdc1
# udevtest /block/sdd/sdd1
# udevtest /block/sde/sde1
The output from the first disk should look something like this.


# udevtest /block/sdb/sdb1
main: looking at device '/block/sdb/sdb1' from subsystem 'block'
udev_rules_get_name: add symlink 'disk/by-id/scsi-SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3-part1'
udev_rules_get_name: add symlink 'disk/by-path/pci-0000:00:0d.0-scsi-1:0:0:0-part1'
run_program: '/lib/udev/vol_id --export /dev/.tmp-8-17'
run_program: '/lib/udev/vol_id' returned with status 4
run_program: '/sbin/scsi_id -g -u -s /block/sdb/sdb1'
run_program: '/sbin/scsi_id' (stdout) 'SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3_'
run_program: '/sbin/scsi_id' returned with status 0
udev_rules_get_name: rule applied, 'sdb1' becomes 'asm-disk1'
udev_device_event: device '/block/sdb/sdb1' already in database, validate currently present symlinks
udev_node_add: creating device node '/dev/asm-disk1', major = '8', minor = '17', mode = '0660', uid = '1100', gid = '1200'
udev_node_add: creating symlink '/dev/disk/by-id/scsi-SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3-part1' to '../../asm-disk1'
udev_node_add: creating symlink '/dev/disk/by-path/pci-0000:00:0d.0-scsi-1:0:0:0-part1' to '../../asm-disk1'
main: run: 'socket:/org/kernel/dm/multipath_event'
main: run: 'socket:/org/kernel/udev/monitor'
main: run: '/lib/udev/udev_run_devd'
main: run: 'socket:/org/freedesktop/hal/udev_event'
main: run: '/sbin/pam_console_apply /dev/asm-disk1 /dev/disk/by-id/scsi-SATA_VBOX_HARDDISK_VBd306dbe0-df3367e3-part1 /dev/disk/by-path/pci-0000:00:0d.0-scsi-1:0:0:0-part1'
#
Restart UDEV Service


Restart the UDEV service.


# /sbin/udevcontrol reload_rules
# /sbin/start_udev
Check Ownership and Permissions


Check the disks are now available with the "asm-disk*" alias and the correct ownership and permissions.


# cd /dev
# ls -al asm-disk*
brw-rw---- 1 oracle dba 8, 17 Apr  8 22:47 asm-disk1
brw-rw---- 1 oracle dba 8, 33 Apr  8 22:47 asm-disk2
brw-rw---- 1 oracle dba 8, 49 Apr  8 22:47 asm-disk3
brw-rw---- 1 oracle dba 8, 65 Apr  8 22:47 asm-disk4
#
So the ASM_DISKSTRING initialization parameter in the ASM instance can be set to '/dev/asm-disk*' to identify the ASM disks.
内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值