堆排序的python实现
def max_heapify(heap, heapSize, root):
left = 2*root+1
right = left+1
larger = root
if left < heapSize and heap[larger] < heap[left]:
larger = left
if right < heapSize and heap[larger] < heap[right]:
larger = right
if larger != root:
heap[larger], heap[root] = heap[root], heap[larger]
max_heapify(heap, heapSize, larger)
def build_max_heap(heap):
heap_size = len(heap)
for i in range((heap_size - 1 - 1)//2, -1, -1):
max_heapify(heap, heap_size, i)
def heap_sort(heap):
build_max_heap(heap)
for i in range(len(heap)-1, -1, -1):
heap[0], heap[i] = heap[i], heap[0]
max_heapify(heap, i, 0)
思想:首先建立最大堆,然后每次从最大堆取出最大值放到末尾,重新调整最大堆。
主要在于堆的调整,在max_heapify中实现的,每次从堆顶(已建立最大堆,只不过堆顶元素新插入)开始,向下的过程。
而最大堆的建立build_max_heap的过程是自下而上的,从第一个非叶子结点开始从下往上建立,子节点对应的父节点为(n-1)//2。