Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
这是一个动态规划问题,onedim[ ]表示将i 到 j 行的数字压缩到一行,然后就可以将问题转换到求最大子序列的和的问题,进一步求出问题的解,特别要注意数组的初始化问题,每次讲二维数组压缩到一维数组的时候,都要将数组初始化为0;然后进行压缩,每次压缩之后就可以取最大值,进而求出答案
代码:
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
int arrsize;
int arrnumber[105][105];
int onedim[105];
void trans(int srow ,int enrow )///将二维矩阵转化为一维的;然后求最大连续子序列的和
{
memset(onedim,0,sizeof(onedim));
for ( int j = 0; j < arrsize; j++ )
{
for ( int i = srow; i<= enrow; i++ )
{
onedim[j] += arrnumber[i][j];
}
}
}
int maxsum ()///求最大连续子序列的和
{
int bigsum[105];
memset(bigsum,0,sizeof(bigsum));
bigsum[0] = onedim[0];
for ( int i = 1; i < arrsize; i++ )
{
if ( bigsum[i-1] > 0) bigsum[i]=bigsum[i-1]+onedim[i];
else bigsum[i] = onedim[i];
}
int ans = 0;
for ( int i = 1; i < arrsize; i++ )
{
ans = max(ans,bigsum[i]);
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
while ( cin >> arrsize )
{
for ( int i = 0; i < arrsize; i++ )
{
for ( int j = 0; j < arrsize; j++ )
{
cin >> arrnumber[i][j];
}
}
int ans = 0;
for ( int i = 0 ;i < arrsize; i++ )
{
for ( int j = i; j < arrsize; j++ )
{
trans(i,j);
ans = max(ans,maxsum());
}
}
cout << ans << endl;
}
}