python基础知识- 递归函数

本文介绍了递归函数的基本概念,包括其定义、优点及注意事项。详细解释了如何通过尾递归优化来避免栈溢出问题,并提供了计算阶乘和汉诺塔问题的递归实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

递归函数

定义:一个函数在内部自身调用自身本身。

优点:定义简单,逻辑清晰。

注意:

防止栈溢出。(函数的调用是通过栈的数据结构实现的,每当进入一个函数调用,栈就会增加一层栈帧,每当函数返回,栈就会减少一层栈帧。)

解决方法:通过尾递归优化。在函数返回的时候,调用自身,return语句不能包含表达式。这样,编译器或解释器就可以把尾递归做优化,使函数不论调用多少次,都只占用一个栈帧,不会出现栈溢出情况。

# 递归函数

# 计算阶乘 n!

def fact(n):

    if n == 1:

       return 1

    return n * fact(n - 1)

# 测试结果

>>> fact(100)

93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

>>> fact(1000)

Traceback (most recent call last):

def fact(n):

RecursionError: maximum recursion depth exceeded in comparison

使用尾递归:

def fact(n):

    return fact_iter(n, 1)

def fact_iter(num, product):

    if num == 1:

        return product

    return fact_iter(num -  1, num * product)

大多数编程语言没有对尾递归做优化,Python解释器也没有做优化,因此,改动之后程序也会导致栈溢出。

 

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

练习:

# -*- coding:utf-8 -*-

# 汉诺塔递归函数实现

def move(n, a, b, c):

    if n == 1:

        print('move', a, '-->', c)

    else:

        move(n-1, a, c, b)

        move(1, a, b, c)

        move(n-1, b, a, c)

# 测试:

move(3, 'A', 'B', 'C')

move A --> C

move A --> B

move C --> B

move A --> C

move B --> A

move B --> C

move A --> C

转载来自:廖雪峰的官方网站

 

def fact(n):

    return fact_iter(n, 1)

def fact_iter(num, product):

    if num == 1:

        return product

    return fact_iter(num -  1, num * product)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值