[LeetCode]Course Schedule ||



Cited From Yu's Coding Garden

"

Analysis:


This is a classic Graph topology sorting problem, but an easy version. We don't have to store the sort, in other words, we only need to detect if exists cycle in a directed graph.

Both DFS and BFS can be used to solve this problem.

First of all, we need to get a representation of the graph, either adjacency matrix or adjacency list is OK. In my code, you can see both ways. But note that, when the number of vertex is large, adjacency matrix usually is NOT a good option.

In DFS, the general idea, is to search each vertex in the graph recursively, if the current vertex has been visited in this search, then there must be a cycle. Be careful with the status of each vertex, here in my code, it has three states:  unvisited (=0), visited(=1), searching(=-1). The third states is to detect the existence of cycle, while the 2nd state indicate that the vertex is already checked and there is no cycle.

In BFS, the idea is much easier.  We store the indegree of each vertex, push the vertices with 0 indegree in stack (remember general BFS framwork?).  Every time, pop the stack and set indegree of connected vertices -1. In the end, if the number of popped out vertices is less than the total number of vertices in the original graph, there is cycle.
"

//原始版本。
//adjacent list换成map更方便
//degree方式 bfs推进,不需要查环,回环 永远是避开的不扫的(只有你 degree为0才入stack )。最后count数就会小于总数。

public class Solution {
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        int[] Res = new int[numCourses];
        //ind records indegree for each course
        int[] ind = new int[numCourses];
        //al is the adjacent list
        List
  
   
    > al = new ArrayList
    
     
      >();
        for(int i=0; i
      
        temp = new ArrayList
       
        (); al.add(temp); } //构建图的adjacent list for(int i=0; i< prerequisites.length; i++){ int[] item = prerequisites[i]; if(al.get(item[1]).isEmpty()){ al.get(item[1]).add(item[0]); ind[item[0]] += 1; }else{ if(!al.get(item[1]).contains(item[0])){ al.get(item[1]).add(item[0]); ind[item[0]] += 1; } } } //向queue内推入indegree = 0 的course作为搜索起点(代表可以直接上的课) LinkedList
        
          queue = new LinkedList
         
          (); for(int i=0; i
          
           > map = new HashMap
           
            >(); for(int i=0; i
            
             ()); } for(int[] p : pre){ map.get(p[1]).add(p[0]); } return topSort(map,numC); } public static int[] topSort(HashMap
             
              > map, int numC){ List
              
                res = new ArrayList
               
                (); HashSet
                
                  visited = new HashSet
                 
                  (); HashSet
                  
                    records = new HashSet
                   
                    (); for(int key:map.keySet()){ if(!dfs(key,map, visited,records, res)) return new int[0]; } int[] ans = new int[numC]; for(int i=0; i
                    
                     > map, HashSet
                     
                       visited, HashSet
                      
                        records, List
                       
                         res ){ if(records.contains(node)) return false; if(visited.contains(node)) return true; records.add(node); if(map.containsKey(node)){ for(int key : map.get(node)){ if(!dfs(key, map, visited, records, res)) return false; } } records.remove(Integer.valueOf(node)); visited.add(node); res.add(0,node); return true; } } 
                       
                      
                     
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   
  


内容概要:本文系统阐述了Java Persistence API(JPA)的核心概念、技术架构、核心组件及实践应用,重点介绍了JPA作为Java官方定义的对象关系映射(ORM)规范,如何通过实体类、EntityManager、JPQL和persistence.xml配置文件实现Java对象与数据库表之间的映射与操作。文章详细说明了JPA解决的传统JDBC开发痛点,如代码冗余、对象映射繁琐、跨数据库兼容性差等问题,并解析了JPA与Hibernate、EclipseLink等实现框架的关系。同时提供了基于Hibernate和MySQL的完整实践案例,涵盖Maven依赖配置、实体类定义、CRUD操作实现等关键步骤,并列举了常用JPA注解及其用途。最后总结了JPA的标准化优势、开发效率提升能力及在Spring生态中的延伸应用。 适合人群:具备一定Java基础,熟悉基本数据库操作,工作1-3年的后端开发人员或正在学习ORM技术的中级开发者。 使用场景及目标:①理解JPA作为ORM规范的核心原理与组件协作机制;②掌握基于JPA+Hibernate进行数据库操作的开发流程;③为技术选型、团队培训或向Spring Data JPA过渡提供理论与实践基础。 阅读建议:此资源以理论结合实践的方式讲解JPA,建议读者在学习过程中同步搭建环境,动手实现文中示例代码,重点关注EntityManager的使用、JPQL语法特点以及注解配置规则,从而深入理解JPA的设计思想与工程价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值