yy loves ac


Description

Yangyang takes part in the ACM Summer Training. She loves AC, but there is so much knowledge to learn, For example, Dynamic Programming, Greedy, Search, Graph, Data Structure, and so on. So she decides to ask some other ACMers for help. There are some details below:

There are M (1 <= M <= 20000) ACMers. As we know, ACMers are always busy, so she decides to ask each ACMer at most once.

After being helped, Yangyang will fell happy, The i-th ACMer will bring her Hi(1 <= Hi <= 2^13)Happiness. Moreover, Yangyang prefer to numbers that are power of 2, (that is to say, only 1, 2, 4, 8, 16 … 2^13 are valid value of the happiness)

Summer Training has N (1 <= N <= 20000) days. Yangyang have a threshold of happiness Ti (1 <= Ti <= 20000) at the i-th day. If the total happiness of the day is greater than or equal to Ti, this day will be a happy day for her. Yangyang wants to maximize the number of happy days, but she doesn’t know how to achieve the idea, so again she come to ask you for help, can you make her happy?

Input

There are multiple test cases.

In each test case, the first line contains two postive integers N,M, separated by a space, where N indicates the number of days, and M indicates the number of ACMers

The following N lines, each will contain a integer, the i-th integer indicates the threshold of happiness for the i-th day.

The following M lines, each will contain a integer, the i-th integer indicates the happiness which the i-th ACMer will bring to her.

Output

For each test case ,output an integer, the maximum number of happy days.

Sample Input

1 2

2

1

1

3 2

1

3

4

2

8
Sample Output

1

2
Author

Footmen

题目大意可以抽象成给定N个盒子和M件物品,问这些物品最多能装满几个盒子(物品的大小是2的幂,一个盒子的物品大小加起来大于等于该盒子的容量时即视为装满了)。

思路:二分+贪心

二分盒子数为num,由题可知,我们肯定是放入前num小容量的盒子,然后对于这num个盒子,我们用m个物品去填补它们,贪心的规则是每次选取一个体积最大的物品,放入num个盒子内体积最大的那一个(用优先队列来实现),如果盒子还未被填满,那么我们把这个新盒子(容量为原容量-物品容量)放入队列中,等待重新被填满,最后当物品放完时看盒子是否已经被填满了,如果填满了,那么说明该解是一个可行解。

<pre name="code" class="cpp">/*
 * hujx.cpp
 *
 *  Created on: 2014年10月2日
 *      Author: dell
 */
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<time.h>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<limits.h>
//#define ONLINE_JUDGE
#define eps 1e-8
#define INF 0x7fffffff
#define FOR(i,a) for((i)=0;i<(a);(i)++)
#define MEM(a) (memset((a),0,sizeof(a)))
#define sfs(a) scanf("%s",a)
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define pf(a) printf("%d\n",a)
#define pfI(a) printf("%I64d\n",a)
#define pfs(a) printf("%s\n",a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,c)scanf("%d%d%d",&a,&b,&c)
#define for1(i,a,b) for(int i=(a);i<b;i++)
#define for2(i,a,b) for(int i=(a);i<=b;i++)
#define for3(i,a,b)for(int i=(b);i>=a;i--)
#define MEM1(a) memset(a,0,sizeof(a))
#define MEM2(a) memset(a,-1,sizeof(a))
const double PI=acos(-1.0);
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
using namespace std;
#define N 20005
int n,m;
int a[N];
int b[N];
bool Check(int num){
	priority_queue<int> q;
	for(int i=0;i<num;i++){
		if(a[i]) q.push(a[i]);
	}
	int tot=m;
	while(!q.empty()){
		tot--;							//每次选取体积最大的物品
		if(tot<0) break;
		int p=q.top();					//每次选取体积最大的盒子
		q.pop();
		p = Max(0,p-b[tot]);
		if(p>0){							//如果该盒子还未被填满,那么就重新"生成"一个新的盒子,放入队列中,准备填充
			q.push(p);
		}
	}
	return q.empty();			//返回队列是否为空(即这num个盒子是否能被填满)
}
void solve(){
	int l=0,r=n;
	int ans=-1;
	while(l<=r){								//注意此处二分法的写法,为左闭右闭区间
		int mid = (l+r)/2;
		if(Check(mid)){
			l=mid+1;
			ans=Max(ans,mid);
		}else
			r=mid-1;
	}
	printf("%d\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
	freopen("in.txt","r",stdin);
	freopen("out.txt","w",stdout);
#endif
	while(scanf("%d%d",&n,&m)!=EOF){
		for(int i=0;i<n;i++)
			sf(a[i]);
		for(int i=0;i<m;i++)
			sf(b[i]);
		sort(a,a+n);
		sort(b,b+m);
		solve();
	}
return 0;
}







需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
### Shohag Loves Greatest Common Divisor (GCD) In both programming and mathematics contexts, the concept of the greatest common divisor (GCD) plays a crucial role. The GCD is defined as the largest positive integer that divides each of the integers without leaving a remainder. #### Mathematical Definition Mathematically speaking, given two non-zero integers \(a\) and \(b\), their greatest common divisor can be denoted by \(\gcd(a, b)\). This value represents the highest number which evenly divides both numbers[^1]. #### Recursive Implementation in C Language A recursive approach to computing the GCD involves repeatedly applying Euclid's algorithm until reaching a base case where one parameter becomes zero: ```c int gcd(int m, int n) { if (n == 0) return m; else return gcd(n, m % n); } ``` This implementation efficiently reduces the problem size at every step through modulo operations while ensuring correctness via recursion. An alternative version ensures larger values are always passed first before performing division checks: ```c int gcd(int n, int m) { int temp; if (n < m) { // Ensure n >= m temp = n; n = m; m = temp; } if (n % m == 0) return m; else return gcd(m, n % m); } ``` Such adjustments improve performance when dealing with specific input ranges but maintain fundamental logic based on modular arithmetic principles[^2]. #### Application Example: String Division Problem An interesting application appears within LeetCode challenge **1071**, concerning strings rather than numeric types directly. Here, determining whether string `s` consists entirely of repeated instances of another substring `t`, effectively translates into checking divisibility properties between lengths |s| and |t|. If such conditions hold true, then further analysis applies similar concepts seen earlier regarding numerical factors and multiples[^3]: Given this background information about how GCD operates across different domains—from basic mathematical theory down to practical coding exercises—one gains deeper insight into its versatile utility beyond mere factorization tasks alone.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值