yy loves ac


Description

Yangyang takes part in the ACM Summer Training. She loves AC, but there is so much knowledge to learn, For example, Dynamic Programming, Greedy, Search, Graph, Data Structure, and so on. So she decides to ask some other ACMers for help. There are some details below:

There are M (1 <= M <= 20000) ACMers. As we know, ACMers are always busy, so she decides to ask each ACMer at most once.

After being helped, Yangyang will fell happy, The i-th ACMer will bring her Hi(1 <= Hi <= 2^13)Happiness. Moreover, Yangyang prefer to numbers that are power of 2, (that is to say, only 1, 2, 4, 8, 16 … 2^13 are valid value of the happiness)

Summer Training has N (1 <= N <= 20000) days. Yangyang have a threshold of happiness Ti (1 <= Ti <= 20000) at the i-th day. If the total happiness of the day is greater than or equal to Ti, this day will be a happy day for her. Yangyang wants to maximize the number of happy days, but she doesn’t know how to achieve the idea, so again she come to ask you for help, can you make her happy?

Input

There are multiple test cases.

In each test case, the first line contains two postive integers N,M, separated by a space, where N indicates the number of days, and M indicates the number of ACMers

The following N lines, each will contain a integer, the i-th integer indicates the threshold of happiness for the i-th day.

The following M lines, each will contain a integer, the i-th integer indicates the happiness which the i-th ACMer will bring to her.

Output

For each test case ,output an integer, the maximum number of happy days.

Sample Input

1 2

2

1

1

3 2

1

3

4

2

8
Sample Output

1

2
Author

Footmen

题目大意可以抽象成给定N个盒子和M件物品,问这些物品最多能装满几个盒子(物品的大小是2的幂,一个盒子的物品大小加起来大于等于该盒子的容量时即视为装满了)。

思路:二分+贪心

二分盒子数为num,由题可知,我们肯定是放入前num小容量的盒子,然后对于这num个盒子,我们用m个物品去填补它们,贪心的规则是每次选取一个体积最大的物品,放入num个盒子内体积最大的那一个(用优先队列来实现),如果盒子还未被填满,那么我们把这个新盒子(容量为原容量-物品容量)放入队列中,等待重新被填满,最后当物品放完时看盒子是否已经被填满了,如果填满了,那么说明该解是一个可行解。

<pre name="code" class="cpp">/*
 * hujx.cpp
 *
 *  Created on: 2014年10月2日
 *      Author: dell
 */
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<time.h>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<limits.h>
//#define ONLINE_JUDGE
#define eps 1e-8
#define INF 0x7fffffff
#define FOR(i,a) for((i)=0;i<(a);(i)++)
#define MEM(a) (memset((a),0,sizeof(a)))
#define sfs(a) scanf("%s",a)
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define pf(a) printf("%d\n",a)
#define pfI(a) printf("%I64d\n",a)
#define pfs(a) printf("%s\n",a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,c)scanf("%d%d%d",&a,&b,&c)
#define for1(i,a,b) for(int i=(a);i<b;i++)
#define for2(i,a,b) for(int i=(a);i<=b;i++)
#define for3(i,a,b)for(int i=(b);i>=a;i--)
#define MEM1(a) memset(a,0,sizeof(a))
#define MEM2(a) memset(a,-1,sizeof(a))
const double PI=acos(-1.0);
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
using namespace std;
#define N 20005
int n,m;
int a[N];
int b[N];
bool Check(int num){
	priority_queue<int> q;
	for(int i=0;i<num;i++){
		if(a[i]) q.push(a[i]);
	}
	int tot=m;
	while(!q.empty()){
		tot--;							//每次选取体积最大的物品
		if(tot<0) break;
		int p=q.top();					//每次选取体积最大的盒子
		q.pop();
		p = Max(0,p-b[tot]);
		if(p>0){							//如果该盒子还未被填满,那么就重新"生成"一个新的盒子,放入队列中,准备填充
			q.push(p);
		}
	}
	return q.empty();			//返回队列是否为空(即这num个盒子是否能被填满)
}
void solve(){
	int l=0,r=n;
	int ans=-1;
	while(l<=r){								//注意此处二分法的写法,为左闭右闭区间
		int mid = (l+r)/2;
		if(Check(mid)){
			l=mid+1;
			ans=Max(ans,mid);
		}else
			r=mid-1;
	}
	printf("%d\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
	freopen("in.txt","r",stdin);
	freopen("out.txt","w",stdout);
#endif
	while(scanf("%d%d",&n,&m)!=EOF){
		for(int i=0;i<n;i++)
			sf(a[i]);
		for(int i=0;i<m;i++)
			sf(b[i]);
		sort(a,a+n);
		sort(b,b+m);
		solve();
	}
return 0;
}







考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
### Shohag Loves Greatest Common Divisor (GCD) In both programming and mathematics contexts, the concept of the greatest common divisor (GCD) plays a crucial role. The GCD is defined as the largest positive integer that divides each of the integers without leaving a remainder. #### Mathematical Definition Mathematically speaking, given two non-zero integers \(a\) and \(b\), their greatest common divisor can be denoted by \(\gcd(a, b)\). This value represents the highest number which evenly divides both numbers[^1]. #### Recursive Implementation in C Language A recursive approach to computing the GCD involves repeatedly applying Euclid's algorithm until reaching a base case where one parameter becomes zero: ```c int gcd(int m, int n) { if (n == 0) return m; else return gcd(n, m % n); } ``` This implementation efficiently reduces the problem size at every step through modulo operations while ensuring correctness via recursion. An alternative version ensures larger values are always passed first before performing division checks: ```c int gcd(int n, int m) { int temp; if (n < m) { // Ensure n >= m temp = n; n = m; m = temp; } if (n % m == 0) return m; else return gcd(m, n % m); } ``` Such adjustments improve performance when dealing with specific input ranges but maintain fundamental logic based on modular arithmetic principles[^2]. #### Application Example: String Division Problem An interesting application appears within LeetCode challenge **1071**, concerning strings rather than numeric types directly. Here, determining whether string `s` consists entirely of repeated instances of another substring `t`, effectively translates into checking divisibility properties between lengths |s| and |t|. If such conditions hold true, then further analysis applies similar concepts seen earlier regarding numerical factors and multiples[^3]: Given this background information about how GCD operates across different domains—from basic mathematical theory down to practical coding exercises—one gains deeper insight into its versatile utility beyond mere factorization tasks alone.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值