归并排序(Merge Sort)

本文深入解析归并排序算法,一种基于分治法的稳定排序方法。通过递归将数组分为子序列,对子序列排序后再合并,实现高效排序。文章包含算法描述、动图演示、代码实现及性能分析。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

动图演示

归并排序

代码实现

下面的排序算法统一使用的测试代码如下,源码GitHub链接

public static void main(String[] args) {
    int[] array = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
	// 只需要修改成对应的方法名就可以了
    mergeSort(array);

    System.out.println(Arrays.toString(array));
}
/**
 * Description: 归并排序
 *
 * @param array
 * @return void
 * @author JourWon
 * @date 2019/7/11 23:37
 */
public static void mergeSort(int[] array) {
	if (array == null || array.length <= 1) {
		return;
	}

	sort(array, 0, array.length - 1);
}

private static void sort(int[] array, int left, int right) {
	if (left == right) {
		return;
	}
	int mid = left + ((right - left) >> 1);
	// 对左侧子序列进行递归排序
	sort(array, left, mid);
	// 对右侧子序列进行递归排序
	sort(array, mid + 1, right);
	// 合并
	merge(array, left, mid, right);
}

private static void merge(int[] array, int left, int mid, int right) {
	int[] temp = new int[right - left + 1];
	int i = 0;
	int p1 = left;
	int p2 = mid + 1;
	// 比较左右两部分的元素,哪个小,把那个元素填入temp中
	while (p1 <= mid && p2 <= right) {
		temp[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++];
	}
	// 上面的循环退出后,把剩余的元素依次填入到temp中
	// 以下两个while只有一个会执行
	while (p1 <= mid) {
		temp[i++] = array[p1++];
	}
	while (p2 <= right) {
		temp[i++] = array[p2++];
	}
	// 把最终的排序的结果复制给原数组
	for (i = 0; i < temp.length; i++) {
		array[left + i] = temp[i];
	}
}

算法分析

最佳情况:T(n) = O(n) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)

### 归并排序的实现原理 归并排序是一种基于分治法(Divide and Conquer)的有效排序算法。其核心思想是通过将待排序数组分割为更小的部分,分别对这些部分进行排序后再将其合并成为一个整体有序的结果[^1]。 具体来说,归并排序的过程可以分为以下几个方面: #### 1. **分解** 整个数据集被递归地划分为较小的子集合,直到每个子集合仅包含单个元素为止。因为单一元素本身已经是有序的,所以这一步骤完成了基础单元的创建[^2]。 #### 2. **合并** 当所有的子集合都已经被拆解到最小单位之后,开始逐步地把它们两两合并起来,在每次合并的过程中都会确保新形成的组合也是按照顺序排列好的。这种“归并”的过程会一直持续下去,直至最终形成一个完整的、完全有序的数据列表[^3]。 以下是归并排序的核心伪代码表示: ```python def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left_half = merge_sort(arr[:mid]) right_half = merge_sort(arr[mid:]) return merge(left_half, right_half) def merge(left, right): sorted_array = [] i = j = 0 while i < len(left) and j < len(right): if left[i] < right[j]: sorted_array.append(left[i]) i += 1 else: sorted_array.append(right[j]) j += 1 sorted_array.extend(left[i:]) sorted_array.extend(right[j:]) return sorted_array ``` 这段代码展示了如何使用 Python 来实现归并排序的功能。其中 `merge` 函数负责执行实际的合并操作,而 `merge_sort` 则控制着递归调用以及何时停止进一步划分输入数组。 ### 时间复杂度分析 由于每一次都将当前序列分成两半处理,并且每一层都需要遍历全部 n 项来进行比较和移动,因此总的运行时间为 O(n log n)。 ### 稳定性特点 值得注意的是,归并排序属于稳定性的排序方式之一,这意味着即使存在相等的关键字记录也不会改变彼此原有的次序关系。
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值