1、池化操作:
输入如下:
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataloader = DataLoader(dataset, batch_size=64,)
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]],dtype=torch.float32)
input = torch.reshape(input, (-1,1,5,5))
print(input.shape)
形状如下:
2、定义网络:
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
3、调用神经网络:
tudui = Tudui()
output = tudui(input)
print(output)
结果如下:
4、在现实数据集中使用池化层:
tudui = Tudui()
# output = tudui(input)
# print(output)
writer = SummaryWriter('logs_maxpool')
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images('input', imgs, step)
output = tudui(imgs)
writer.add_images('output', output, step)
step += 1
writer.close()
结果如下: