牛客 明七暗七----数位dp

这篇博客介绍了一种利用数位动态规划(DP)和二分查找技术来解决一个名为明七暗七的游戏策略问题。游戏中,玩家按逆时针顺序报数,遇到7的倍数或包含7的数字时需拍手。作者通过分析和编写代码展示了如何计算出在给定限制条件下,应该在哪个数时拍手。博客内容涉及算法分析和编程技巧,适合对算法和数学感兴趣的读者阅读。
部署运行你感兴趣的模型镜像

题目链接:https://ac.nowcoder.com/acm/problem/17867

题目描述:
今天是个特殊的日子,CSL和他的小伙伴们围坐在一张桌子上玩起了明七暗七的游戏。游戏规则是这样的:

一个人报出一个起始数,接下来按照逆时针的顺序轮流报数,如果碰到数是7的倍数或含有7,则拍手,下一个人接着报数。直到有一个人报错了数字或者没有及时拍手为止。

玩游戏嘛,当然得有惩罚。这么简单的游戏对CSL的学霸小伙伴而言实在是太无脑了,轻轻松松数到上万根本不在话下。但是对于数学是体育老师教的CSL来说,实在是太难了。快帮他算算什么时候应该拍手吧。

分析:
这道题很有意思套了个数位dp+二分,首先计算出小于等于m的数有多少个满足要求,然后去二分枚举答案ans,使得小于等于ans的满足要求的数-小于等于m的满足要的数等于n,那么这个数就是答案,也即solve(ans)-solve(m)==n;

代码:

#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
ll f[20][2][7];
int a[20];
/*pos表示当前位数,limit表示是否被限制,appear表示之前是否出现过7,mod表示当前模7的余数*/
ll dfs(int pos,bool limit,bool appear,int mod)
{
	if(!pos)
	{
		if(appear||mod==0) return 1;
		else return 0;
	}
	if(~f[pos][appear][mod]&&!limit) return f[pos][appear][mod];
	int ed=9;
	if(limit) ed = a[pos];
	ll ans = 0;
	for(int i=0;i<=ed;i++)
	{
		ans+=dfs(pos-1,limit&&(i==ed),appear||(i==7),(mod*10+i)%7);
	}
	if(!limit) f[pos][appear][mod] = ans;
	return ans;
}
ll solve(ll number)
{
	memset(f,-1,sizeof(f));
	int pos = 0;
	while(number){
		a[++pos] = number%10;
		number/=10; 
	}
	return dfs(pos,1,0,0);
}
int main()
{
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	ll n,m;
	cin>>m>>n;
	/*计算小于等于m个数里面有多少个满足要求的数*/
	ll temp = solve(m); 
	ll l=m+1,r=1e18;
	ll mid;
	while(l<r)
	{
	    mid=l+r>>1;
		if(solve(mid)-temp>=n) r=mid;
		else l=mid+1;
	}
	printf("%lld\n",l);
}

您可能感兴趣的与本文相关的镜像

Seed-Coder-8B-Base

Seed-Coder-8B-Base

文本生成
Seed-Coder

Seed-Coder是一个功能强大、透明、参数高效的 8B 级开源代码模型系列,包括基础变体、指导变体和推理变体,由字节团队开源

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值