tensowflow报错tensorflow.python.framework.errors_impl.InvalidArgumentError<exception str

本文探讨了使用TensorFlow在自定义数据集上导入模型时遇到的InvalidArgumentError异常问题。作者分享了如何确保导入模型的参数与训练时使用的参数一致,特别是针对不同输出数量的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


tensorflow用于自己的数据集时,在用saver.restore导入模型到Session中,导入语句报错,异常链终止时提示:
tensorflow.python.framework.errors_impl.InvalidArgumentError exception str() failed

其实我认为相当一部分python程序错误不能从异常链中读出问题所在,当然也可能是我智商限制了自己推理不出来问题。
其实大多是参数问题,比如这个问题我自己看我的代码模型没有毛病,后来发现自己在导入一个模型的时候,忘了修改模型参数与自己train时候用到的参数匹配。train时候用的模型有4个输出,原先用于mnist数据集的模型有10个输出,在修改后程序正常运行。
概括地讲,你在restore的时候必须保证当先代码构建的模型与原模型参数匹配,如果不匹配则会报错。当然这个问题尤其在你有多个载入模块的时候,需要仔细校验每一个载入模块的参数类型,数目是否与原来train时候的参数数目匹配。唯有如此,才能使自己的模型得到验证工作
我已经用1.15的tensorflow冻结生成了pb模型,同时也用1.15的tensorflow转为rknn但是报错了 W load_tensorflow: Catch exception when loading tensorflow model: ./frozen_facenet.pb! W load_tensorflow: Make sure that the tensorflow version of './frozen_facenet.pb' is consistent with the installed tensorflow version '1.15.0'! E load_tensorflow: Traceback (most recent call last): E load_tensorflow: File "/home/book/anaconda3/envs/rknn/lib/python3.7/site-packages/tensorflow_core/python/framework/importer.py", line 501, in _import_graph_def_internal E load_tensorflow: graph._c_graph, serialized, options) # pylint: disable=protected-access E load_tensorflow: tensorflow.python.framework.errors_impl.InvalidArgumentError: Input 0 of node InceptionResnetV1/Bottleneck/BatchNorm/cond_1/AssignMovingAvg_1/Switch was passed float from InceptionResnetV1/Bottleneck/BatchNorm/moving_variance:0 incompatible with expected float_ref. E load_tensorflow: During handling of the above exception, another exception occurred: E load_tensorflow: Traceback (most recent call last): E load_tensorflow: File "rknn/api/rknn_base.py", line 1271, in rknn.api.rknn_base.RKNNBase.load_tensorflow E load_tensorflow: File "rknn/base/convertor/tensorflow2onnx/tf2onnx/convert.py", line 631, in rknn.base.convertor.tensorflow2onnx.tf2onnx.convert.from_graph_def E load_tensorflow: File "rknn/base/convertor/tensorflow2onnx/tf2onnx/convert.py", line 632, in rknn.base.convertor.tensorflow2onnx.tf2onnx.convert.from_graph_def E load_tensorflow: File "rknn/base/convertor/tensorflow2onnx/tf2onnx/convert.py", line 633, in rknn.base.convertor.tensorflow2onnx.tf2onnx.convert.from_graph_def E load_tensorflow: File "rknn/base/convertor/tensorflow2onnx/tf2onnx/convert.py", line 634, in rknn.base.convertor.tensorflow2onnx.tf2onnx.convert.from_graph_def E load_tensorflow: File "/home/book/anaconda3/envs/rknn/lib/python3.7/site-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func E load_tensorflow: return func(*args, **kwargs) E load_tensorflow: File "/home/book/anaconda3/envs/rknn/lib/python3.7/site-packages/tensorflow_core/python/framework/importer.py", line 405, in import_graph_def E load_tensorflow: producer_op_list=producer_op_list) E load_tensorflow: File "/home/book/anaconda3/envs/rknn/lib/python3.7/site-packages/tensorflow_core/python/framework/importer.py", line 505, in _import_graph_def_internal E load_tensorflow: raise ValueError(str(e)) E load_tensorflow: ValueError: Input 0 of node InceptionResnetV1/Bottleneck/BatchNorm/cond_1/AssignMovingAvg_1/Switch was passed float from InceptionResnetV1/Bottleneck/BatchNorm/moving_variance:0 incompatible with expected float_ref. W If you can't handle this error, please try updating to the latest version of the toolkit2 and runtime from: https://console.zbox.filez.com/l/I00fc3 (Pwd: rknn) Path: RKNPU2_SDK / 2.X.X / develop / If the error still exists in the latest version, please collect the corresponding error logs and the model, convert script, and input data that can reproduce the problem, and then submit an issue on: https://redmine.rock-chips.com (Please consult our sales or FAE for the redmine account) E build: The model has not been loaded, please load it first! E export_rknn: RKNN model does not exist, please load & build model first!
03-26
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值