异构计算架构师眼中的AI算法(object detection)

随着目标检测技术的发展,图片尺寸不断增大以满足更宽广视野的需求。这不仅增加了计算量,也给底层计算平台带来了数据搬移上的挑战。文章探讨了在机器人及无人车等应用场景下,如何平衡大图片带来的计算和功耗问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:虽然detection在classification基础上焕发了春天,但算法的复杂度确实增加了不少。对于底层平台来说,虽然看起来还是一堆卷积,但图片的增大,带来了一些列问题。


目标检测object detection由于除了要识别what,还要找出where,从算法本身上复杂了许多。虽然最终实现端到端检测的网络是一个卷机网络,貌似和之前没有多大差别,但大图片除了计算量增加xx倍意外,图片的搬移才是给底层计算平台带来的最大挑战,高效的数据搬移重要性浮出水面,设计的中心从“计算为主”逐步切换到“计算加搬移”并重。


对底层平台来说,核心在于理解:


1. 为什么图片在object detection下越来越大,这个是不是其核心诉求?答案是,这个是第一诉求,从应用场景看,detection本身就是识别多个物体,提取出小图片来识别的代价太大;同时应用中物体的远近不等,大图片采集更大的视野也是一个主要原因。但同时一个利好因素是,在端侧应用,受限于人眼的识别能力,图片识别的张数要远比在服务器侧压力小。


2. 功耗的额要求:在机器人、无人车等应用中,和服务器端相比,功耗是一个关键因素。




























评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值