Remote Method Invocation (RMI)

本文详细解析了Java RMI(Remote Method Invocation)的基本概念、架构、工作流程及关键组件,包括远程接口、远程引用、绑定、安全性管理、序列化与反序列化等核心知识点,帮助开发者掌握RMI在分布式系统中的应用与实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

78. What is RMI ? The Java Remote Method Invocation (Java RMI) is a Java API that performs the object-oriented equivalent of remote procedure calls (RPC), with support for direct transfer of serialized Java classes and distributed garbage collection. Remote Method Invocation (RMI) can also be seen as the process of activating a method on a remotely running object. RMI offers location transparency because a user feels that a method is executed on a locally running object. Check some RMI Tips here.

79. What is the basic principle of RMI architecture ? The RMI architecture is based on a very important principle which states that the definition of the behavior and the implementation of that behavior, are separate concepts. RMI allows the code that defines the behavior and the code that implements the behavior to remain separate and to run on separate JVMs.

80. What are the layers of RMI Architecture ? The RMI architecture consists of the following layers:

  • Stub and Skeleton layer: This layer lies just beneath the view of the developer. This layer is responsible for intercepting method calls made by the client to the interface and redirect these calls to a remote RMI Service.
  • Remote Reference Layer: The second layer of the RMI architecture deals with the interpretation of references made from the client to the server’s remote objects. This layer interprets and manages references made from clients to the remote service objects. The connection is a one-to-one (unicast) link.
  • Transport layer: This layer is responsible for connecting the two JVM participating in the service. This layer is based on TCP/IP connections between machines in a network. It provides basic connectivity, as well as some firewall penetration strategies.

81. What is the role of Remote Interface in RMI ? The Remote interface serves to identify interfaces whose methods may be invoked from a non-local virtual machine. Any object that is a remote object must directly or indirectly implement this interface. A class that implements a remote interface should declare the remote interfaces being implemented, define the constructor for each remote object and provide an implementation for each remote method in all remote interfaces.

82. What is the role of the java.rmi.Naming Class ? The java.rmi.Naming class provides methods for storing and obtaining references to remote objects in the remote object registry. Each method of the Naming class takes as one of its arguments a name that is a String in URL format.

83. What is meant by binding in RMI ? Binding is the process of associating or registering a name for a remote object, which can be used at a later time, in order to look up that remote object. A remote object can be associated with a name using the bind or rebind methods of the Naming class.

84. What is the difference between using bind() and rebind() methods of Naming Class ? The bind method bind is responsible for binding the specified name to a remote object, while the rebind method is responsible for rebinding the specified name to a new remote object. In case a binding exists for that name, the binding is replaced.

85. What are the steps involved to make work a RMI program ? The following steps must be involved in order for a RMI program to work properly:

  • Compilation of all source files.
  • Generatation of the stubs using rmic.
  • Start the rmiregistry.
  • Start the RMIServer.
  • Run the client program.

86. What is the role of stub in RMI ? A stub for a remote object acts as a client’s local representative or proxy for the remote object. The caller invokes a method on the local stub, which is responsible for executing the method on the remote object. When a stub’s method is invoked, it undergoes the following steps:

  • It initiates a connection to the remote JVM containing the remote object.
  • It marshals the parameters to the remote JVM.
  • It waits for the result of the method invocation and execution.
  • It unmarshals the return value or an exception if the method has not been successfully executed.
  • It returns the value to the caller.

87. What is DGC ? And how does it work ? DGC stands for Distributed Garbage Collection. Remote Method Invocation (RMI) uses DGC for automatic garbage collection. Since RMI involves remote object references across JVM’s, garbage collection can be quite difficult. DGC uses a reference counting algorithm to provide automatic memory management for remote objects.

88. What is the purpose of using RMISecurityManager in RMI ? RMISecurityManager provides a security manager that can be used by RMI applications, which use downloaded code. The class loader of RMI will not download any classes from remote locations, if the security manager has not been set.

89. Explain Marshalling and demarshalling. When an application wants to pass its memory objects across a network to another host or persist it to storage, the in-memory representation must be converted to a suitable format. This process is called marshalling and the revert operation is called demarshalling.

90. Explain Serialization and Deserialization. Java provides a mechanism, called object serialization where an object can be represented as a sequence of bytes and includes the object’s data, as well as information about the object’s type, and the types of data stored in the object. Thus, serialization can be seen as a way of flattening objects, in order to be stored on disk, and later, read back and reconstituted. Deserialisation is the reverse process of converting an object from its flattened state to a live object.

内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值