原理
概述
仿射变换是矩阵乘法(线性变换)和向量加法的结合。它包含了:
- 旋转(线性变换)
- 转换(向量加法)
- 缩放(线性变换)
本质上,仿射变换就是两个图像矩阵之间的运算。
通常用一个 2 × 3 2 \times 3 2×3的矩阵来展示仿射变换(向量加法):
A = [ a 00 a 01 a 10 a 11 ] 2 × 2 B = [ b 00 b 10 ] 2 × 1 A= \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix}_{2\times 2} B= \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix}_{2 \times 1} A=[a00a10a01a11]2×2B=[b00b10]2×1
M = [ A B ] = [ a 00 a 01 b 00 a 10 a 11 b 10 ] 2 × 3 M = \begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & b_{00} \\ a_{10} & a_{11} & b_{10} \end{bmatrix}_{2 \times 3} M=[AB]=[a00a10a01a11b00b