TensorFlow学习笔记之 bmp格式、txt格式数据转换成tfrecord 格式

本文介绍如何将BMP图像和TXT数据转换为TFRecord格式,用于TensorFlow高效数据处理。通过Python代码示例,详细讲解了转换过程,提高了数据读取速度和处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

之前我们讲过了关于 tfrecord 格式的相关内容,在这个博客——【超分辨率】30分钟学会TensorFlow高效处理数据的方法 - TFRecords 格式,这里我们来说一下如何将bmp 格式、txt 格式数据转换成 tfrecord 格式

二、bmp 格式数据转换成 tfrecord 格式的代码

import tensorflow as tf
import os
from PIL import Image
import numpy as np

filepath_list = []
root = os.walk('./traindatasets/').__next__()[0]
folder_names = os.walk(root).__next__()[1]
for folder_name in folder_names:
    folder_path = os.path.join(root, folder_name)
    image_names = os.walk(folder_path).__next__()[2]
    for image_name in image_names:
        image_path = folder_path + '/' + image_name
        filepath_list.append(image_path)

# 创建向 TFRecords 文件写数据记录的 writer
writer = tf.python_io.TFRecordWriter('train.tfrecord')

for filepath in filepath_list:
    label_path = root + filepath.split('/')[-2] + '/label/label.bmp'
    
    img = Image.open(filepath)
    img = img.resize((512, 512))
    # 将参数使用UTF-8的编码格式转换成byte[]
    img_raw = img.tobytes()
    
    label = Image.open(label_path)
    label = label.resize((512, 512))
    label_raw = label.tobytes()

	# tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'label_raw': tf.train.Feature(
                    bytes_list=tf.train.BytesList(
                        value=[label_raw])), 
                 'img_raw': tf.train.Feature(
                    bytes_list=tf.train.BytesList(
                        value=[img_raw]))}))
    # 将样例序列化为字符串后,写入stat.tfrecord文件
    writer.write(example.SerializeToString())
# 关闭输出流
writer.close()

数据集是十张.bmp格式的图片。
在这里插入图片描述
运行代码后.bmp格式的图片生成 .tfrecord 格式文件。
在这里插入图片描述
由于存储中的精度问题,转换格式前后的数据信息存在可以忽略的差别,-8次的数量级的差别。

三、txt 格式数据转换成 tfrecord 格式的代码

整体上和bmp的代码相同,除了txt格式的读取和数据格式,使用np.txt函数进行txt数据的读取;由于是浮点数类型,使用float_listFloatList进行操作,即可。
在这里插入图片描述
读取和使用的在之前的博客中讲过,可以自行查看这个博客——【超分辨率】30分钟学会TensorFlow高效处理数据的方法 - TFRecords 格式,使用tfrecord格式文件进行读取和处理的速度和效率都更高。

如果想要更多的资源,欢迎关注 @我是管小亮,文字强迫症MAX~

回复【福利】即可获取我为你准备的大礼,包括C++,编程四大件,NLP,深度学习等等的资料。

想看更多文(段)章(子),欢迎关注微信公众号「程序员管小亮」~

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是管小亮

一口吃掉你的打赏,嗝~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值